The goal of this study is to develop a new effective guar gum-grafted acrylamide hydrogel for wastewater treatment, abbreviated as (guar gum-g-acrylamide). For the non-biodegradable and hazardous synthetic acid red 8, the produced guar gum-g-acrylamide hydrogel is a promising thermally stable adsorbent. Microwave-aided technique, ammonium persulfate initiator, and N,N′-methylene-bis-acrylamide cross-linker are used to make a hydrogel comprising natural polysaccharides guar gum grafted by poly acrylamide. Fourier transformer infrared (FTIR) spectra and scanning electron microscopy (SEM) demonstrate that varied percentages of acrylamide successfully graft the backbone of guar gum. When the grafting percentage of acrylamide is raised, the hydrogel’s maximum adsorption capacity (qe) increases. At pH 1 of dye solution, maximum adsorption capacity (qe) is 18 mg.g−1, at pH 9; qe is decreased up to 8 mg.g−1. At 0.5 g.L−1 hydrogel, the dye has a low removal percentage (34%), but when the hydrogel dosage is increased to 8 g.L−1, the removal percentage increases to 90%. When the initial AR8 dye concentration was increased from 50 to 300 mg.L−1, the removal percentage reduced to 20% and the adsorbed quantity dye increased from 17 to 44 mg.g−1, but both parameters became limited above this dye concentration. Other ideal conditions for AR8 dye removal by the hydrogel include 60 min of contact time, 150 revolutions per minute (rpm), and a temperature of 20 degrees Celsius. The AR8 dye adsorption kinetic is pseudo-second order, assuming electrostatic interaction between the negatively charged AR8 dye molecules and the positively charged hydrogel-functional group. The adsorption values fit the Langmuir isotherm, with qmax. of 54.054 mg.g−1. The adsorbed quantity (qe) decreases as the temperature rises, indicating that dye molecules physisorbed on the hydrogel pores, and the maximum adsorption capacity is at 20 °C. The exothermic and spontaneity of adsorption were confirmed by the negative values of heat of adsorption (∆H°ads.) and standard Gibbs free energy of adsorption (∆G°ads.). The reusability of the hydrogel was validated after three cycles of desorption of AR8 dye from the hydrogel surface in alkaline solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.