Gasket contact stress and its variation through the gasket width is caused by the rotation of the flange and has an influence on the leakage tightness behavior of bolted flange joints. The future implementation by the ASME of proposed design rules is based on new gasket constants obtained from the ROTT (room temperature tightness) tests conducted on rigid platens. The gasket contact stress distribution needs to be addressed for the purpose of better joint tightness predictions. This paper presents a comprehensive analytical method that predicts the gasket contact stress distribution taking into account the nonlinear mechanical behavior of the gasket material. Based on the flange rotational flexibility, the proposed analytical model that is implemented in the “SuperFlange” program is supported and validated by numerical FEA and experimental analyses on flange rotations, radial distribution of gasket contact stress, and joint leak tightness.
Finite element modeling (FEM) of machining has recently become the most attractive computational tool to predict and optimize metal cutting processes. High-speed computers and advanced finite element code have offered the possibility of simulating complex machining processes such as turning, milling, and drilling. The use of an accurate constitutive law is very important in any metal cutting simulation. It is desirable that a constitutive law could completely characterize the thermovisco-plastic behavior of the machined materials at high strain rate. The most commonly used law is that of Johnson and Cook (JC) which combines the effect of strains, strain rates, and temperatures. Unfortunately, the different coefficients provided in the literature for a given material are not reliable since they affect significantly the predicted results (cutting forces, temperatures, residual stresses, etc.). In the present work, five different sets of JC are determined based on orthogonal machining tests. These five sets are then used in finite element modeling to simulate the machining behavior of Al2024-T3 alloy. The effects of these five different sets of JC constants on the numerically predicted cutting forces, chip morphology, and tool-chip contact length are the subject of a comparative investigation. It is concluded that these predicted cutting parameters are sensitive to the material constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.