Despite the huge efforts employed to implement novel chemotherapeutic paradigms for lung cancer, the disease still remains a major concern worldwide. Targeting molecular pathways as Hedgehog (Hh) and Mitogen-activated protein kinase (MAPK) represent a new hope in lung cancer treatment. This work was undertaken to evaluate the antitumor effects of GANT61 (5 μM), BI-847325(30 μM), and GANT61 (5 μM)/BI-847325(30 μM) combination on A549 adenocarcinoma lung cancer cell line. The growth inhibition 50 (GI50) for both drugs was performed using MTT. The protein levels of Caspase-3, Bcl-2-associated X protein (Bax), Myeloid cell leukemia sequence 1 (MCL-1), cyclin D1, vascular endothelial growth factor (VEGF), extracellular signal-regulated kinases (ERK), p-Akt, and phosphohistone H3 (pHH3) were measured using ELISA. Glioma-associated oncogene homolog 1(Gli1) gene expression was assessed by quantitative real-time PCR. The GI50 for GANT61 and BI-8473255 were 5 µM and 30 µM, respectively. Caspase-3 and Bax protein levels were significantly elevated while MCL-1, cyclin D1, VEGF, ERK 1/2, p-Akt, and pHH3 levels were significantly reduced by both drugs and their combination relative to the control group. Gli1 gene expression was down-regulated in all groups relative to the control group. GANT61, BI-847325 and their combination inhibited proliferation and angiogenesis but activated the apoptotic pathway. Both drugs conferred a profound negative impact on the crosstalk between each of Hh and MAPK pathways and Phosphoinositide 3 -kinases (PI3K)/Akt/Mammalian target of Rapamycin (mTOR). To the best of our knowledge, the antitumor effects of BI-847325/GANT61 combination have not been tested before. Further in-vitro and in-vivo studies are warranted to support the findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.