A wind tunnel is needed for a lot of research and model testing in the field of engineering design. Commercial wind tunnels are large and expensive, making them unsuitable for small-scale aerodynamic model testing. This work aims to experimentally investigate the effects of flow, noise, and vibration on constructing and designing a low-speed wind tunnel structure. The flow uniformity in the wind tunnel has been tested by measuring the velocity profiles inside the empty test section with a pitot-static tube at various fan frequencies. The experiment results showed a good flow uniformity of more than 90% across the test section area, and the maximum wind velocity achieved was about 25.1 m/s. Due to the stability of the flow near the exit test section, the vibration measurement revealed that the entrance portion has larger vibration fluctuations than the exit part. Furthermore, as the axial fan frequency increases, the noise level increases. At 40 Hz, the noise level enters the hazardous zone, which has an impact on the person who performs the measurement process. The resonance of the wind tunnel structure is an important measurement test that affects vibration measurement.
Flow over shallow cavities is used to model the flow field and heat transfer in a solar collector and a variety of engineering applications. Many studies have been conducted to demonstrate the effect of cavity aspect ratio (AR), but very few studies have been carried out to investigate the effect of cavity height ratio (HR) on shallow cavity flow behavior. In this paper, flow field structure and heat transfer within the 3-D shallow cavity are obtained numerically for two height ratio categories: HR = 0.0, 0.25, 0.5, 0.75, and 1.0 and HR = 1.25, 1.5, 1.75, 2.0, 2.25, and 2.5. The governing equations, continuity, momentum, and energy are solved numerically and using the standard (K-ε) turbulence model. ANSYS FLUENT 14 CFD code is used to perform the numerical simulation based on the finite volume method. In this study, the cavity aspect ratio, AR = 5.0, and Reynolds number, Re = 3 × 105, parameters are fixed. The cavity’s bottom wall is heated with a constant and uniform heat flux (q = 740 W/m2), while the other walls are assumed to be adiabatic. For the current Reynolds number and cavity geometry, a single vortex structure (recirculation region) is formed and occupies most of the cavity volume. The shape and location of the vortex differ according to the height ratio. A reverse velocity profile across the recirculation region near the cavity’s bottom wall is shown at all cavity height ratios. Streamlines and temperature contours on the plane of symmetry and cavity bottom wall are displayed. Local static pressure coefficient and Nusselt number profiles are obtained along the cavity’s bottom wall, and the average Nusselt number for various height ratios is established. The cavity height ratio (HR) is an important geometry parameter in shallow cavities, and it plays a significant role in the cavity flow behavior and heat transfer characteristics. The results indicate interesting flow dynamics based on height ratio (HR), which includes a minimal value in average Nusselt number for HR ≈ 1.75 and spatial transitions in local Nusselt number distribution along the bottom wall for different HRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.