Papain and pepsin-hydrolyzed whey protein (PAH and PEH, respectively) were prepared and characterized for its degree of hydrolysis, chemical constituents (amino acid and peptides) and antioxidant activity. A field experiment was conducted at El Salheya El Gedida City, Sharqia, Egypt, during the seasons 2019 and 2020, to investigate the biological action of the foliar spray of PAH and PEH on the growth and yield of pea plants cultivated in a clay loam soil. Foliar application of the papain and pepsin-hydrolyzed whey protein (PAH and PEH, respectively) at 1000 and 2000 mg/L was applied three times after 25, 35 and 45 days from planting. All protein foliar spray treatments had significant positive effects on the uptake of N, P and K, simultaneously increasing the contents of all the photosynthetic pigments (Chlorophyll a, Chlorophyll b and Carotenoids) in a concentration-dependent manner. The most conspicuous increase was seen in Chlorophyll b (105% increase), followed by Carotenoids (91% increase). Generally, the favorable increases caused by the second level of application (2000 mg/L) were nearly 2–3 times that of the low level (1000 mg/L). Pod growth and formation indicators, e.g., no. of pod/plant, pod length and no. of seeds/pod, responded more evidently to the hydrolyzed than the intact form of whey protein treatments. Hydrolyzed whey protein foliar spray treatments achieved significantly higher increases in the global field yield components of Pisum sativum plants than the intact form, where peptic hydrolysates were significantly superior to papain hydrolysate. The treatment PEH (2000 mg/L) can be recommended as the most effective bio-stimulating foliar spray treatment for higher plant productivity when applied 25, 35 and 45 days after planting.
Lettuce (Lactuca sativa) was grown using a foliar spray with whey protein hydrolysate (WPH) as opposed to normal nitrate fertilization. Lettuce juice was prepared from lettuce cultivated without any fertilization, nitrate fertilization, or WPH. Sixty weaned, 4-week-old male V-line rabbits with an average 455 ± 6 g body weight were randomly divided into 4 groups (n = 15) and administered different lettuce juices. Rabbits administered WPH-fertilized lettuce showed significantly higher (n = 5, p < 0.05) body weight and carcass weight than those receiving nitrate-fertilized lettuce. Rabbits administered nitrate-fertilized lettuce were associated with significantly (p < 0.05) higher levels of liver enzyme activities (AST, ALT, and ALP), bilirubin (total, direct, and indirect), and kidney biomarkers (creatinine, urea, and uric acid). Rabbits administered WPH-fertilized lettuce avoided such increases and exhibited normal levels of serum proteins. Rabbits administered nitrate-fertilized lettuce manifested significantly (p < 0.05) lower RBCs and Hb levels than that of the other groups, while those receiving WPH-fertilized lettuce showed the highest levels. Liver and kidney sections of rabbits receiving WPH-fertilized lettuce witnessed the absence of the histopathological changes induced by feeding on nitrate-fertilized lettuce and produced higher quality meat. WPH-lettuce can substitute nitrate-fertilized lettuce in feeding rabbits for better performance and health aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.