Indium tin oxide (ITO) films are widely used as transparent conducting electrodes in solar cells, gas sensors, and car windows because of their high electrical conductivity and good optical transparency in the visible region. In this work, ITO thin films were prepared by cathodic radio-frequency (RF) sputtering using an ITO target with 90% In2O3 and 10% SnO2. The structural properties were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and X-ray reflectometry (XRR). Electrical measurements were performed by applying the four-point method and studying the Hall Effect. Finally, optical properties were taken by the UV-Vis-NIR spectrophotometry. The effect of the RF power and deposition time on optical and electrical properties was investigated. It is shown that by using a RF power of 110–80 W, one can prepare crystalline samples with low resistivity, which is an aimed property for TCO semiconductors. Electrical measurements revealed that the resistivity decreases by increasing the RF power and/or the deposition time.
Copper oxide nanowires (CuO NWs) were synthesized by thermally oxidizing copper foils at various heating rates. It has been shown that both monoclinic CuO and cubic Cu2O phases were grown on the copper surface with NW diameters of almost 200 nm for all samples. While NWs were shown to be dense for low heating rates, they end up being broken for quick heating. The underlying growth mechanism was described basing on a detailed comprehensive study, and the effect of the heating rate was explained by considering the thermal shock effect and in-plane tensile stresses on curved surfaces. This study contributes to the research for suitable methods for the use of recyclable metals in technological applications. In particular, copper oxide NWs were deposited, for the first time, on FTO/glass substrates, and the optical characterization revealed that this method is a promising way to improve the surface contact for solar cells and catalytic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.