The DmpA (d-aminopeptidase A) protein produced by Ochrobactrum anthropi hydrolyses p-nitroanilide derivatives of glycine and d-alanine more efficiently than that of l-alanine. When regular peptides are utilized as substrates, the enzyme behaves as an aminopeptidase with a preference for N-terminal residues in an l configuration, thus exemplifying an interesting case of stereospecificity reversal. The best-hydrolysed substrate is l-Ala-Gly-Gly, but tetra- and penta-peptides are also efficiently hydrolysed. The gene encodes a 375-residue precursor, but the active enzyme contains two polypeptides corresponding to residues 2-249 (alpha-subunit) and 250-375 (beta-subunit) of the precursor. Residues 249 and 250 are a Gly and a Ser respectively, and various substitutions performed by site-directed mutagenesis result in the production of an uncleaved and inactive protein. The N-terminal Ser residue of the beta-subunit is followed by a hydrophobic peptide, which is predicted to form a beta-strand structure. All these properties strongly suggest that DmpA is an N-terminal amidohydrolase. An exploration of the databases highlights the presence of a number of open reading frames encoding related proteins in various bacterial genomes. Thus DmpA is very probably the prototype of an original family of N-terminal hydrolases.
SummaryDifferent strains of Bacillus were screened for their ability to hydrolyse D-alanyl-p-nitroanilide. Activity was detected in Bacillus pumilus, Bacillus brevis, Bacillus licheniformis 749I and Bacillus subtilis 168. The last strain was the best producer and was selected for the production and purification of the enzyme. The determination of the N-terminal sequence identified the enzyme as the product of the dppA gene (previously named dciAA) belonging to the dipeptide ABC transport (dpp) operon expressed early during sporulation. Open reading frames (ORFs) encoding putative related proteins were found in the genomes of a variety of Archaea and both sporulating and non-sporulating bacteria. The enzyme behaves as a D-aminopeptidase and represents the prototype of a new peptidase family. Among the tested substrates, the highest activities were found with D-Ala-D-Ala and D-Ala-Gly-Gly. The active enzyme behaves as an octamer of identical 30 kDa subunits. It exhibits a broad pH optimum, extending between pH 9 and 11. It is reversibly inhibited in the presence of Zn 21 chelators, and the sequence comparisons highlight the conservation of potential Zn-binding residues. As it has been shown by others that null mutations in the dpp operon do not inhibit spore formation, the physiological role of DppA is probably an adaptation to nutrient deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.