Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during water sample filtration or from DNA extraction protocols. Control measurements for sample contamination are important for clean water studies.
Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the ‘red-water’ phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El Menzeh WSP and focused in particular on the different functional groups of sulfur bacteria. For this purpose, we used denaturing gradient gel electrophoresis of PCR-amplified fragments of the 16S rRNA gene and of different functional genes involved in microbial sulfur metabolism (dsrB, aprA, and pufM). Analyses of the 16S rRNA revealed a relatively high microbial diversity where Proteobacteria, Chlorobi, Bacteroidetes, and Cyanobacteria constitute the major bacterial groups. The dsrB and aprA gene analysis revealed the presence of deltaproteobacterial sulfate-reducing bacteria (i.e., Desulfobacter and Desulfobulbus), while the analysis of 16S rRNA, aprA, and pufM genes assigned the sulfur-oxidizing bacteria community to the photosynthetic representatives belonging to the Chlorobi (green sulfur bacteria) and the Proteobacteria (purple sulfur and non sulfur bacteria) phyla. These results point on the diversity of the metabolic processes within this wastewater plant and/or the availability of sulfate and diverse electron donors.Electronic supplementary materialThe online version of this article (doi:10.1007/s00253-012-3931-5) contains supplementary material, which is available to authorized users.
Both eutrophication and thermal stratification lead to degradation of wastewater treatment efficiency and have a major effect on the wastewater pond biology, but their effects on phototrophic anoxygenic bacterial community is not as well understood. Terminal restriction fragment length polymorphism analysis proved to be a valuable technique that could resolve the diversity and shift of the purple anoxygenic phototrophic community composition in three stage wastewater stabilization ponds (WSP) exhibiting periodically red water phenomenon. Chemical and biological parameters confirmed the eutrophic state during the appearance of the red water. Concomitantly a decrease of ponds performances is reported with total removal percentage of 27, 36 and 43% for Total suspended solid (TSS), DBO 5 and DCO, respectively. By targeting the pufM gene, 74 Terminal restriction fragments (TRFs) were detected in the three studied ponds which 78% were located in the anaerobic and facultative ponds. Simpson (D) and Shannon (H') diversity index showed a loss of phototrophic bacterial diversity from the anaerobic to the maturation pond, especially in the water phase. Principal coordinate analysis (PCoA) of both HpaII and HaeIII -T-RFLP profiles, allowed deducting a differential distribution between the water and sediments samples.
Characterization of eukaryotic community dominated by fungi for drinking water distribution network fed by reverse osmosis seawater desalination plant.
The molecular diversity of the purple photosynthetic bacteria was assessed during temporal pigmentation changes in four interconnected wastewater stabilization ponds treating domestic wastewater by denaturant gel gradient electrophoresis method applying pufM gene. Results revealed high phylogenetic diversity of the purple phototrophic anoxygenic bacteria community characterized by the presence of the purple non-sulfur, purple sulfur, and purple aerobic photosynthetic anoxygenic bacteria. This phototrophic bacterial assemblage was dominated by the purple non-sulfur bacteria group (59.3 %) with six different genera followed by the purple sulfur community (27.8 %) with four genera and finally 12.9 % of the pufM gene sequences were assigned throughout the aerobic anoxygenic phototrophic bacterial group. The purple phototrophic bacterial community was characterized by the presence of salt-dependant bacterial species belonging to the genus Marichromatium, Thiorhodococcus, Erythrobacter, and Roseobacter. The wastewater treatment plant performances were unsatisfactory, and the biological and chemical parameters suggested that the purple photosynthetic bloom was correlated with the eutrophic state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.