Glioblastoma represent the most frequent primary tumors of the central nervous system and remain among the most aggressive human cancers as available therapeutic approaches still fail to contain their invasiveness. Many studies have reported elevated expression of the Focal Adhesion Kinase (FAK) protein in glioblastoma, associated with an increase in the rates of both migration and invasion. This designates FAK as a promising target to limit invasiveness in glioblastoma. Thymoquinone (TQ), the main phytoactive compound of Nigella sativa has shown remarkable anti-neoplasic activities on a variety of cancer cells. Here, we studied the anti-invasive and anti-migratory effects of TQ on human glioblastoma cells. The results obtained indicated that TQ treatment reduced migration, adhesion and invasion of both U-87 and CCF-STTG1 cells. This was accompanied by a drastic down-regulation of FAK, associated with a reduction of ERK phosphorylation as well as MMP-2 and MMP-9 secretion. This study provides new data on FAK regulation by a natural product (TQ) which could be of a great value for the development of novel therapies in glioblastoma.
The microtubule-targeting agents derived from natural products, such as vinca-alkaloids and taxanes are an important family of efficient anti-cancer drugs with therapeutic benefits in both haematological and solid tumors. These drugs interfere with the assembly of microtubules of α/β tubulin heterodimers without altering their expression level. The aim of the present study was to investigate the effect of thymoquinone (TQ), a natural product present in black cumin seed oil known to exhibit putative anti-cancer activities, on α/β tubulin expression in human astrocytoma cells (cell line U87, solid tumor model) and in Jurkat cells (T lymphoblastic leukaemia cells). TQ induced a concentration- and time-dependent degradation of α/β tubulin in both cancer cell types. This degradation was associated with the up-regulation of the tumor suppressor p73 with subsequent induction of apoptosis. Interestingly, TQ had no effect on α/β tubulin protein expression in normal human fibroblast cells, which were used as a non-cancerous cell model. These data indicate that TQ exerts a selective effect towards α/β tubulin in cancer cells. In conclusion, the present findings indicate that TQ is a novel anti-microtubule drug which targets the level of α/β tubulin proteins in cancer cells. Furthermore, they highlight the interest of developing anti-cancer therapies that target directly tubulin rather than microtubules dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.