The mapping of soil nutrients is a key issue for numerous applications and research fields ranging from global changes to environmental degradation, from sustainable soil management to the precision agriculture concept. The characterization, modeling and mapping of soil properties at diverse spatial and temporal scales are key factors required for different environments. This paper is focused on the use and comparison of soil chemical analyses, Visible near infrared and shortwave infrared VNIR-SWIR spectroscopy, partial least-squares regression (PLSR), Ordinary Kriging (OK), and Landsat-8 operational land imager (OLI) images, to inexpensively analyze and predict the content of different soil nutrients (nitrogen (N), phosphorus (P), and potassium (K)), pH, and soil organic matter (SOM) in arid conditions. To achieve this aim, 100 surface samples of soil were gathered to a depth of 25 cm in the Wadi El-Garawla area (the northwest coast of Egypt) using chemical analyses and reflectance spectroscopy in the wavelength range from 350 to 2500 nm. PLSR was used firstly to model the relationship between the averaged values from the ASD spectroradiometer and the available N, P, and K, pH and SOM contents in soils in order to map the predicted value using Ordinary Kriging (OK) and secondly to retrieve N, P, K, pH, and SOM values from OLI images. Thirty soil samples were selected to verify the validity of the results. The randomly selected samples included the spatial diversity and characteristics of the study area. The prediction of available of N, P, K pH and SOM in soils using VNIR-SWIR spectroscopy showed high performance (where R2 was 0.89, 0.72, 0.91, 0.65, and 0.75, respectively) and quite satisfactory results from Landsat-8 OLI images (correlation R2 values 0.71, 0.68, 0.55, 0.62 and 0.7, respectively). The results showed that about 84% of the soils of Wadi El-Garawla are characterized by low-to-moderate fertility, while about 16% of the area is characterized by high soil fertility.
This paper is focused on the use of satellite Sentinel-2 data for assessing their capability in the identification of archaeological buried remains. We selected the "Tavoliere delle Puglie" (Foggia, Italy) as a test area because it is characterized by a long human frequentation and is very rich in archaeological remains. The investigations were performed using multi-temporal Sentinel-2 data and spectral indices, commonly used in satellite-based archaeology, and herein analyzed in known archaeological areas to capture the spectral signatures of soil and crop marks and characterize their temporal behavior using Time Series Analysis and Spectral Un-mixing. Tasseled Cap Transformation and Principal Component Analysis have been also adopted to enhance archaeological features. Results from investigations were compared with independent data sources and enabled us to (i) characterize the spectral signatures of soil and crop marks, (ii) assess the performance of the diverse spectral channels and indices, and (iii) identify the best period of the year to capture the archaeological proxy indicators. Additional very important results of our investigations were (i) the discovery of unknown archaeological areas and (ii) the setup of a database of archaeological features devised ad hoc to characterize and categorize the diverse typologies of archaeological remains detected using Sentinel-2 Data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.