Globe-LFMC is an extensive global database of live fuel moisture content (LFMC) measured from 1,383 sampling sites in 11 countries: Argentina, Australia, China, France, Italy, Senegal, Spain, South Africa, Tunisia, United Kingdom and the United States of America. The database contains 161,717 individual records based on in situ destructive samples used to measure LFMC, representing the amount of water in plant leaves per unit of dry matter. The primary goal of the database is to calibrate and validate remote sensing algorithms used to predict LFMC. However, this database is also relevant for the calibration and validation of dynamic global vegetation models, eco-physiological models of plant water stress as well as understanding the physiological drivers of spatiotemporal variation in LFMC at local, regional and global scales. Globe-LFMC should be useful for studying LFMC trends in response to environmental change and LFMC influence on wildfire occurrence, wildfire behavior, and overall vegetation health.
Abstract:The performance of vegetation indexes derived from moderate resolution imaging spectroradiometer (MODIS) sensors is explored for drought monitoring in the forests of Northern Tunisia; representing a transition zone between the Mediterranean Sea and the Sahara Desert. We investigated the suitability of biomass and moisture vegetation indexes for vegetation water content expressed by the equivalent water thickness (EWT) in a Mediterranean forest ecosystem with contrasted water budgets and desiccation rates. We proposed a revised EWT at canopy level (EWTCAN) based on weekly field measurements of fuel moisture in seven species during the 2010 dry period, considering the mixture of plant functional types for water use (trees, shrubs and herbaceous layers) and a varying vegetation cover. MODIS vegetation indexes computed and smoothed over the dry season were highly correlated with the EWTCAN. The performances of moisture indexes Normalized Difference Infrared Index (NDII6 and NDII7) and Global Moisture Vegetation Index (GVMI6 and GVMI7) were comparable, whereas for biomass vegetation indexes, Normalized Difference 1938Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI) and Adjusted Normalized Difference Vegetation Index (ANDVI) performed better than Enhanced Vegetation Index (EVI) and Soil Adjusted Vegetation Index (SAVI). We also identified the effect of Leaf Area Index (LAI) on EWTCAN monitoring at the regional scale under the tree cover/LAI gradient of the region from relatively dense to open forest. Statistical analysis revealed a significant decreasing linear relationship; indicating that for LAI less than two, the greater the LAI, the less responsive are the vegetation indexes to changes in EWTCAN; whereas for higher LAI, its influence becomes less significant and was not considered in the inversion models based on vegetation indexes. The EWTCAN time-course from LAI-adapted inversion models based on significantly-related vegetation indexes to EWTCAN showed close profiles resulting from the inversion models using NDVI, ANDVI, MSAVI and NDII6 applied during the dry season. The developed EWTCAN model from MODIS vegetation indexes for the study region was finally tested for its ability to capture the topo-climatic effects on the seasonal and the spatial patterns of desiccation/rewetting for keystone periods of Mediterranean vegetation functioning. Implications for further use in scientific developments or management are discussed.
Following publication of this Data Descriptor, it was found that the method for thresholding inclusion of monthly Normalised Difference of Vegetation Index (NDVI) values in the Globe-LFMC dataset was incorrectly stated as >80% of values in a given window missing due to cloud and snow masking. This has now been corrected in the HTML and PDF versions. In addition, due to a datum assignment error, values included in Table 5 were incorrectly reported. Table 5 has been corrected in the HTML and PDF versions, and the underlying data corrected in the associated figshare record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.