Nucleic acid sequences containing guanine tracts are able to adopt noncanonical four-stranded nucleic acid structures called G-quadruplexes (G4s). These structures are based on the stacking of two or more G-tetrads; each tetrad is a planar association of four guanines held together by eight hydrogen bonds. In this study, we analyzed a conserved G-rich region from HIV-1 promoter that is known to regulate the transcription of the HIV-1 provirus. Strikingly, our analysis of an alignment of 1684 HIV-1 sequences from this region showed a high conservation of the ability to form G4 structures despite a lower conservation of the nucleotide primary sequence. Using NMR spectroscopy, we determined the G4 topology adopted by a DNA sequence from this region (HIV-PRO1: 5' TGGCCTGGGCGGGACTGGG 3'). This DNA fragment formed a stable two G-tetrad antiparallel G4 with an additional Watson-Crick CG base pair. This hybrid structure may be critical for HIV-1 gene expression and is potentially a novel target for anti-HIV-1 drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.