This work is a result of previously done studies on the synthesis of A 2 Fe VI O 4 wet ferrate (VI) formula, using chlorine as an oxidant. The major problem of these ferrates is related to their stability over time. This brings us to identify and optimize the critical parameters influencing the preparation of the Na 2 FeO 4 at room stable phase with acceptable performance. The use of water bleach (hypochlorite ClO −) at a chlorometric degree of 50˚F in the synthesis of the Na 2 FeO 4 ambient stable phase promotes the oxidation of iron (II) iron to (VI) in a concentrated NaOH alkaline medium. The synthesis reaction is in the presence of FeSO 4 7H 2 O hydrated iron sulfate at a temperature of about 55˚C in order to simplify the synthesis process, to enhance the production of the Fe (VI) and to meet the growing demand of ferrates (VI) for their interest in the treatment of water. Monitoring the degradation of synthesized Na 2 FeO 4 shows its stability up to 12 months, which facilitates storage and transportation. The phases obtained were characterized by IR spectroscopy, and RX by UV spectrophotometer, measuring the optical density at 507 nm.
The iron compounds in the oxidation state (VI) have the specific advantage of being powerful oxidants and bactericides. This feature explains their particular interest in the treatment of water. The aim of this work is to prepare Na 2 FeO 4 stable at ambient in order to optimize the key parameters influencing the performance of the oxidation of iron (II) to iron (VI), as well as to monitor its degradation over time. The synthesis of this phase has been carried out by using the dry reaction Na 2 O 2 with Fe 2 O 3 with a temperature of 700˚C for a reaction time of 13 hours with a Na/Fe ratio of 4 to make it possible to simplify the synthesis procedure, to minimize the cost and enhance the production of iron (VI) to meet the growing demand of ferrate (VI) for its interest in water treatment. The obtained phase was characterized by UV spectrophotometer by measuring the optical density at a wavelength of 507 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.