Many Artificial Intelligence techniques have been developed for intelligent and autonomous systems to act and make rational decisions based on perceptions of the world state. Among these techniques, HTN (Hierarchical Task Network) planning is one of the most used in practice. HTN planning is based on expressive languages allowing to specify complex expert knowledge for real world domains. At the same time, many preprocessing techniques for classical planning were proposed to speed up the search. One of these technique, named grounding, consists in enumerating and instantiating all the possible actions from the planning problem descriptions. This technique has proven its effectiveness. Therefore, combining the expressiveness of HTN planning with the efficiency of the grounding preprocessing techniques used in classical planning is a very challenging issue. In this paper, we propose a generic algorithm to ground the domain representation for HTN planning. We show experimentally that grounding process improves the performances of state of the art HTN planners on a range of planning problems from the International Planning Competition (IPC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.