Three olive stones-derived activated carbons (ACOS) with different chemical characteristics, appropriate for the removal of iron and manganese in groundwater are prepared. The steam activated carbon is obtained from carbonized olive stones in the presence of nitrogen in the temperature range from 700 to 900°C and modified by HNO 3 and ammonium persulphate. The structure of the activated carbons was characterized by N 2 adsorption at 77 K, scan electron microscopy and FTIR. B.E.T and α-methods are used to deduce the effective surface areas. The parameters (such as initial pH, temperature, etc) affecting the adsorption capacity of ACOS toward iron and manganese cations removal from aqueous solutions are investigated using batch experiments. The study of kinetic models including pseudo first order and pseudo second-order are carried out. Langmuir adsorption isotherm is investigated. Equilibrium adsorption data fitted the Langmuir adsorption isotherm well with R 2 >0.9908. The maximum adsorption capacities of ACOS for the removal of iron and manganese cations are calculated. The results obtained revealed that the sample activated by HNO 3 has the highest adsorption capacity followed by ammonium persulphate and steam activated samples. The mechanism of adsorption is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.