A comparative study was performed in order to analyze the effect of metal oxide (MO) on the properties of a polymeric matrix. In this study, polyaniline (PANI)@Al2O3, PANI@TiC, and PANI@TiO2 nanocomposites were synthesized using in situ polymerization with ammonium persulfate as an oxidant. The prepared materials were characterized by various analytical methods such as X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV/visible (UV/Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). Furthermore, the conductive properties of the materials were tested using the four-point probe method. The presence of MO in the final product was confirmed by XPS, XRD, FTIR, and TEM, while spectroscopic characterization revealed interactions between the MOs and PANI. The results showed that the thermal stability was improved when the MO was incorporated into the polymeric matrix. Moreover, the results revealed that incorporating TiO2 into the PANI matrix improves the optical bandgap of the nanocomposite and decreases electrical conductivity compared to other conducting materials. Furthermore, the electrochemical properties of the hybrid nanocomposites were tested by cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). The obtained results suggest that the PANI@TiO2 nanocomposite could be a promising electrode material candidate for high-performance supercapacitor applications.
The preparation of hybrid materials, namely poly(p-anisidine)@Clay (poly (pAnis)@Clay) and poly(p-anisidine)@cetyltrimethylammoniumbromide-Clay (poly(pAnis)@CTAB-Clay), prepared by oxidative polymerization process is presented. The formation of nanomaterials has been confirmed by XRF, XPS, FT-IR, and UV-Vis spectroscopy. Interestingly, the study of the optical band gap energy (E g) evince lowest value of 3.22 eV for poly(pAnis)@CTAB-Clay compared to poly(pAnis)@Clay with 3.26 eV. XRD results demonstrate that the intercalation of the poly(pAnis) into the Clay was confirmed by the increased interlayer spacing, the exfoliation and intercalation forms were affirmed in the TEM images. In addition, the electrochemical behavior indicates that the prepared nanocomposites are electroactive. These results are heartening in respect with the objective to utilize them in the field of technology and research related to the photovoltaics application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.