Let X be a class of groups. A group G is called a minimal non-X-group if it is not an X-group but all of whose proper subgroups are X-groups. In [16], Xu proved that if G is a soluble minimal non-Baer-group, then G/G is a minimal nonnilpotent-group which possesses a maximal subgroup. In the present note, we prove that if G is a soluble minimal non-(finite-by-Baer)-group, then for all integer n ≥ 2, G/γ n (G ) is a minimal non-(finite-by-abelian)-group.
Our main result is that a locally graded group whose proper subgroups are Baer-by-Chernikov is itself Baer-by-Chernikov. We prove also that a locally (soluble-by-finite) group whose proper subgroups are Baer-by-(finite rank) is itself Baer-by-(finite rank) if either it is locally of finite rank but not locally finite or it has no infinite simple images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.