In different application fields, heterogeneous data sets are structured into either matrices or higher-order tensors. In some cases, these structures present the property of having common underlying factors, which is used to improve the efficiency of factor-matrices estimation in the process of the so-called coupled matrix-tensor factorization (CMTF). Many methods target the CMTF problem relying on alternating algorithms or gradient approaches. However, computational complexity remains a challenge when the data sets are tensors of high-order, which is linked to the well-known "curse of dimensionality". In this paper, we present a methodological approach, using the Joint dImensionality Reduction And Factors rEtrieval (JIRAFE) algorithm for joint factorization of high-order tensor and matrix. This approach reduces the high-order CMTF problem into a set of 3-order CMTF and canonical polyadic decomposition (CPD) problems. The proposed algorithm is evaluated on simulation and compared with a gradient-based method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.