This study aims to synthesize new chalcone oxime functionalized graphene oxide (CO-GO) and investigate the enhancement in corrosion protection. The morphology and structure of the synthesized CO-GO have been characterized by elemental analysis: Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). Moreover, the effectiveness of corrosion inhibition was investigated by utilizing electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). The results of the above analyses demonstrate that CO-GO has an outstanding corrosion inhibitor performance of up to 94% and acts as a mixed-type inhibitor with a primarily anodic action. The effect of temperature on a carbon steel surface indicates that the tested composites are chemisorbed. A few techniques were able to provide surface characterization such as scanning electron microscopy and ultraviolet (UV)−visible spectroscopy to confirm inhibitor adsorption on the carbon steel surface.
A simple, efficient and environmentally friendly procedure has been developed for the three component coupling of carbonyl compounds, aromatic and aliphatic amines and dialkyl phosphites to produce α-amino phosphonates. The α-amino phosphonates are synthesised in high yields (74-97%) in a few minutes (1-3 min) by microwave irradiation under solvent-free conditions, avoiding the use of any catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.