Gurson–Tvergaard–Needleman model is widely used to describe the three stages of ductile tearing: nucleation, growth and the coalescence of micro-voids. The aim of this article is to study the relationship between volume fraction of voids and the fracture strain ɛf. The effects of the volume fraction of nucleation, fN, and the critical volume fraction, fc, were analysed. These parameters play crucial roles in the process of ductile damage. A phenomenological analysis is carried out to study the relationship between the different void volume parameters and the fracture strain ɛf. A method is proposed for the determination of fN and fc, knowing the experimental fracture strain ɛf. The experimental parameters are extracted from the load–diametric contraction curve of an axisymmetric notched tensile bar test AN2.
The topic of this study is the numerical simulation of a turbulent non-premixed hydrogen flame with different micromixing models in order to investigate their predictive capability. The two micromixing models are compared. Comparisons with experimental data demonstrate that predictions based on the EMST model are slightly better. The EMST improves largely the precision of the results to the detriment of the RAM and the CPU performances. Overall, profile predictions of mixture fraction, flame temperature and major species are in reasonable agreement with experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.