Gene discovery and gene therapy call for advanced technologies to reliably assess gene expression; efficient coupling of gene expression to the expression of reporter genes is critical. Various noninvasive molecular imaging modalities have emerged to track biological processes in animal models. Here, we evaluate various strategies to link transgene expression with that of an (imaging) reporter gene. Using lentiviral vectors containing internal ribosomal entry sites (IRES), 2A-like peptides, or a bidirectional promoter, we compared their ability to ensure efficient coexpression of multiple reporter genes. Although the encephalomyocarditis virus (EMCV) IRES yielded functional bicistronic vectors, the expression level of the reporter downstream of IRES was consistently lower than that of the upstream transgene. Interestingly, peptide 2A constructs performed best in vitro and in vivo, providing effective noninvasive follow-up of transgene expression and having reporter gene expression levels in line with that of the single reporter constructs. The intrinsic "cleavage" property of the peptide 2A sequences allows each protein to be produced at proportional levels, opening ample possibilities for functional genomics and future gene therapeutic applications. Last, using various peptide 2A sequences, we engineered the triple reporter LV-3R (i.e., eGFP, fLuc, HSV1-sr39tk), enabling efficient multimodality readouts in vivo.
Signaling by the many ligands of the TGFβ family strongly converges towards only five receptor-activated, intracellular Smad proteins, which fall into two classes i.e. Smad2/3 and Smad1/5/8, respectively. These Smads bind to a surprisingly high number of Smad-interacting proteins (SIPs), many of which are transcription factors (TFs) that co-operate in Smad-controlled target gene transcription in a cell type and context specific manner. A combination of functional analyses in vivo as well as in cell cultures and biochemical studies has revealed the enormous versatility of the Smad proteins. Smads and their SIPs regulate diverse molecular and cellular processes and are also directly relevant to development and disease. In this survey, we selected appropriate examples on the BMP-Smads, with emphasis on Smad1 and Smad5, and on a number of SIPs, i.e. the CPSF subunit Smicl, Ttrap (Tdp2) and Sip1 (Zeb2, Zfhx1b) from our own research carried out in three different vertebrate models.
The development of in vivo imaging protocols to reliably track transplanted cells or to report on gene expression is critical for treatment monitoring in (pre)clinical cell and gene therapy protocols. Therefore, we evaluated the potential of lentiviral vectors (LVs) and adeno-associated viral vectors (AAVs) to express the magnetic resonance imaging (MRI) reporter gene ferritin in the rodent brain. First, we compared the induction of background MRI contrast for both vector systems in immune-deficient and immune-competent mice. LV injection resulted in hypointense (that is, dark) changes of T 2 /T 2 * (spin-spin relaxation time)-weighted MRI contrast at the injection site, which can be partially explained by an inflammatory response against the vector injection. In contrast to LVs, AAV injection resulted in reduced background contrast. Moreover, AAV-mediated ferritin overexpression resulted in significantly enhanced contrast to background on T 2 *-weighted MRI. Although sensitivity associated with the ferritin reporter remains modest, AAVs seem to be the most promising vector system for in vivo MRI reporter gene imaging. Gene Therapy (2011) INTRODUCTIONThe development of non-invasive imaging methods that can reliably report on therapeutic cell transplantation and/or gene expression is a critical step in the establishment of gene therapy protocols, both for clinical and for research applications. Several molecular imaging modalities are available that enable non-invasive and repeated imaging of gene expression in targeted cells in living organisms, thereby reducing the number of laboratory animals and reducing the inter-animal variability at the preclinical level. Among these are radionuclide imaging techniques such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET), optical imaging methods including fluorescence imaging and bioluminescence imaging (BLI), magnetic resonance imaging (MRI) and spectroscopy, ultrasound and X-ray-based methods (for a review, see the studies by Massoud and Gambhir 1 and Deroose et al. 2 ). Apart from optical imaging methods, molecular imaging technologies using these imaging modalities have the advantage of being translatable to a clinical setting.When comparing imaging modalities, BLI, PET and SPECT provide high sensitivity but low resolution, whereas MRI can reach near-cellular resolution, 3-6 which makes MRI ideally suited to provide information on the location and migration of targeted cells in vivo.
BackgroundCell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics.ResultsIn this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-γ-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation.ConclusionWe here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.