We formulate a delayed SIR epidemic model by introducing a latent period into susceptible, and infectious individuals in incidence rate. This new reformulation provides a reasonable role of incubation period on the dynamics of SIR epidemic model. We show that if the basic reproduction number, denoted, R0, is less than unity, the diseasefree equilibrium is locally asymptotically stable. Moreover, we prove that if R0 > 1, the endemic equilibrium is locally asymptotically stable. In the end some numerical simulations are given to compare our model with existing model.
In epidemiological research literatures, a latent or incubation period can be medelled by incorporating it as a delay effect (delayed SIR models), or by introducing an exposed class (SEIR models). In this paper we propose a comparison of a delayed SIR model and its corresponding SEIR model in terms of local stability. Also some numerical simulations are given to illustrate the theoretical results.
In this paper we propose the global dynamics of an SIRI epidemic model
with latency and a general nonlinear incidence function. The model is based
on the susceptible-infective-recovered (SIR) compartmental structure with
relapse (SIRI). Sufficient conditions for the global stability of equilibria (the
disease-free equilibrium and the endemic equilibrium) are obtained by means
of Lyapunov-LaSalle theorem. Also some numerical simulations are given to
illustrate this result.
In this study we consider a mathematical model of an SIR epidemic model with a saturated incidence rate. We used the optimal vaccination strategies to minimize the susceptible and infected individuals and to maximize the number of recovered individuals. We work in the nonlinear optimal control framework. The existence result was discussed. A characterization of the optimal control via adjoint variables was established. We obtained an optimality system that we sought to solve numerically by a competitive Gauss–Seidel like implicit difference method.
In this paper, we analyze the model of business cycle with time delay set forth by A. Krawiec and M. Szydłowski [1]. Our goal in this model is to introduce the time delay into capital stock and gross product in capital accumulation equation. The dynamics are studied in terms of local stability and of the description of the Hopf bifurcation, that is proven to exist as the delay (taken as a parameter of bifurcation) cross some critical value. Additionally we conclude with an application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.