An efficient and credible approach to road traffic management and prediction is a crucial aspect in the Intelligent Transportation Systems (ITS). It can strongly influence the development of road structures and projects. It is also essential for route planning and traffic regulations. In this paper, we propose a hybrid model that combines extreme learning machine (ELM) and ensemble-based techniques to predict the future hourly traffic of a road section in Tangier, a city in the north of Morocco. The model was applied to a real-world historical data set extracted from fixed sensors over a 5-years period. Our approach is based on a type of Single hidden Layer Feed-forward Neural Network (SLFN) known for being a high-speed machine learning algorithm. The model was, then, compared to other well-known algorithms in the prediction literature. Experimental results demonstrated that, according to the most commonly used criteria of error measurements (RMSE, MAE, and MAPE), our model is performing better in terms of prediction accuracy. The use of Akaike’s Information Criterion technique (AIC) has also shown that the proposed model has a higher performance.
<span lang="EN-US">Accident black spots are usually defined as road locations with a high risk of fatal accidents. A thorough analysis of these areas is essential to determine the real causes of mortality due to these accidents and can thus help anticipate the necessary decisions to be made to mitigate their effects. In this context, this study aims to develop a model for the identification, classification and analysis of black spots on roads in Morocco. These areas are first identified using extreme learning machine (ELM) algorithm, and then the infrastructure factors are analyzed by ordinal regression. The XGBoost model is adopted for weighted severity index (WSI) generation, which in turn generates the severity scores to be assigned to individual road segments. The latter are then classified into four classes by using a categorization approach (high, medium, low and safe). Finally, the bagging extreme learning machine is used to classify the severity of road segments according to infrastructures and environmental factors. Simulation results show that the proposed framework accurately and efficiently identified the black spots and outperformed the reputable competing models, especially in terms of accuracy 98.6%. In conclusion, the ordinal analysis revealed that pavement width, road curve type, shoulder width and position were the significant factors contributing to accidents on rural roads.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.