Objective-Previously, the peptide sequence cNGR has been shown to home specifically to CD13/APN (aminopeptidase N) on tumor endothelium. Here, we investigated the feasibility of selective imaging of cardiac angiogenesis using the cNGR-CD13/APN system. Methods and Results-CD13/APN induction and cNGR homing were studied in the murine myocardial infarction (MI) model. By real-time polymerase chain reaction (PCR) at 7 days after MI, CD13/APN expression was 10-to 20-fold higher in the angiogenic infarct border zone and the MI area than in non-MI areas. In vivo fluorescence microscopy confirmed specific homing of fluorophore-tagged cNGR to the border zone and MI territory at 4 and 7 days after MI with a local advantage of 2.3, but not at 1 or 14 days after MI. Tissue residence half-life was 9.1Ϯ0.3 hours, whereas the half-life in plasma was 15.4Ϯ3.4 minutes. Pulse chase experiments confirmed reversible binding of cNGR in the infarct area. Fluorescent labeled cNGR conjugates or antibodies were injected in vivo, and their distribution was studied ex vivo by 2-photon laser scanning microscopy (TPLSM). cNGR co-localized exclusively with CD13/APN and the endothelial marker CD31 on vessels. Conclusions-In cardiac angiogenesis endothelial CD13/APN is upregulated. It can be targeted specifically with cNGR conjugates. In the heart cNGR binds its endothelial target only in angiogenic areas.
Microparticles (MPs), shed during the storage of platelets, support blood coagulation and could be helpful in restoring the haemostatic system in thrombocytopenic patients. The mechanisms by which MPs support haemostasis under flow conditions were investigated. Fluorescent-labelled MPs were perfused at shear rates of 100 and 1000/s over surfaces coated with collagen, fibrinogen, von Willebrand factor (VWF) or surface-adherent platelets. Adhesion was monitored in real-time by fluorescence microscopy. In addition, thrombin-antithrombin (TAT) complex formation was measured in flowing thrombocytopenic blood. MPs attained the capacity to firmly adhere to collagen, VWF, fibrinogen and surface-adherent platelets at high and low shear rate. Antibodies against glycoprotein Ibalpha and alpha(IIb)beta(3) were used to demonstrate the specificities of these interactions. The addition of MPs to thrombocytopenic blood did not affect platelet adhesion. TAT complex formation was increased in the presence of MPs in capillaries coated with fibrinogen, but not on collagen fibres. We confirmed that MPs adhere to a damaged vascular bed in vivo after infusion in denuded arteries in a mouse model. MPs have platelet-like adhering properties and accelerate thrombin generation. These properties strongly support the notion that MPs can be beneficial in maintaining normal haemostasis when platelet function is impaired or reduced, as in thrombocytopenic patients.
Phosphatidylserine (PtdSer) is exposed on the external leaflet of the plasma membrane during apoptosis. The protein annexin A5 (anxA5) shows high affinity for PtdSer. When anxA5 binds to the PtdSer-expressing membranes during apoptosis, it crystallizes as an extended two-dimensional network and activates thereby a novel portal of cell entry that results in the internalization of the PtdSer-expressing membrane patches. This novel pathway of cell entry is potentially involved in the regulation of the surface expression of membrane receptors. In this study we report the regulation of surface expression of the initiator of blood coagulation tissue factor (TF) by this novel pathway of cell entry. AnxA5 induces the internalization of tissue factor expressed on the surface of apoptotic THP-1 macrophages. This down-regulation depends on the abilities of anxA5 to bind to PtdSer and to form a two-dimensional crystal at the membrane. We furthermore show that THP-1 cells produce and externalize anxA5 that cause the internalization of TF in an autocrine type of mechanism. We extended our in vitro work to the in vivo situation and show in a mouse model that anxA5 causes the downregulation of TF expression by smooth muscle cells of the media of the carotid artery that was mechanically injured. In conclusion, anxA5 down-regulates surfaceexpressed TF by activating the novel portal of cell entry. This mechanism may be part of a more general autocrine function of anxA5 to regulate the plasma membrane receptor repertoir under stress conditions associated with the surface expression of PtdSer.
Summary. Background: Blockade of the thrombin receptors protease-activated receptor (PAR)1 and PAR4 with pepducins, cell-penetrating lipopeptides based on the third intracellular loop of PAR1 and PAR4, effectively inhibits platelet aggregation. We have previously shown that PAR1 pepducin also exerts an anticoagulant activity by partial inhibition of the thrombin plus collagen-induced externalization of phosphatidylserine (PS) at the platelet plasma membrane. Objective: In the present study we examined the effects of PAR1 and PAR4 pepducins on tissue factor (TF)-initiated thrombin generation in platelet-rich plasma (PRP) and the interaction between PAR4 pepducin-loaded mouse platelets and a growing thrombus to confirm the relevance of the in vitro data. Results: Localization of pepducins at the inner leaflet of the plasma membrane was confirmed with a fluorescence resonance energy transfer assay. Both the PAR1 pepducin, P1pal12, and the PAR4 pepducin, P4pal10, inhibited TF-initiated thrombin generation in PRP. Concentrations of P1pal12 and P4pal10, which blocked the thrombin-induced influx of extracellular calcium ions and inhibited platelet aggregation, reduced the rate of thrombin generation during the propagation phase by 38% and 36%, respectively. Whether this anticoagulant effect is relevant in inhibiting in vivo arterial thrombin growth is uncertain because P4pal10 prevented the incorporation of platelets in a growing thrombus. Conclusions: Our findings suggest that in spite of their potential anticoagulant activities the in vivo antithrombotic effect of intracellular PAR pepducins is mainly based on inhibiting platelet-platelet interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.