The electrical cable reliability is largely linked to the state of its insulation, which can be threatened by the partial discharges (PDs) activity. This phenomenon is localized in defects created within insulation during the manufacture process and the cable installation. The cavity defect is among the most known defects within the insulating material filled with different gases and having various forms. Under electrical stress, the PDs occur and lead with time to a cable failure. The PDs simulation in cavity defect within cable insulation has became an important tool for a complementary understanding of the experimental task. The plasma model has been considered in last decade as an alternative to describe physically and chemically the PDs mechanism versus the other models such as the capacitance, conductance model. Using plasma model our work aims to simulate the PDs in cavity defect within cable insulation by showing the parameters influence such as the type of gas contained in the cavity, the voltage magnitude and frequency imposed on the insulation on their occurrence through its occurrence mechanisms. This helps to assess the PDs severity on the insulation system to carry out its diagnosis and therefore to have an effective reliability of cable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.