<p>Recommendation systems are used successfully to provide items (example:<br />movies, music, books, news, images) tailored to user preferences.<br />Among the approaches proposed, we use the collaborative filtering approach<br />of finding the information that satisfies the user by using the<br />reviews of other users. These ratings are stored in matrices that their<br />sizes increase exponentially to predict whether an item is interesting<br />or not. The problem is that these systems overlook that an assessment<br />may have been influenced by other factors which we call the cold start<br />factor. Our objective is to apply a hybrid approach of recommendation<br />systems to improve the quality of the recommendation. The advantage<br />of this approach is the fact that it does not require a new algorithm<br />for calculating the predictions. We we are going to apply the two Kclosest<br />neighbor algorithms and the matrix factorization algorithm of<br />collaborative filtering which are based on the method of (singular value<br />decomposition).</p>
<span>Nowadays, recommendation systems are used successfully to provide items (example: movies, music, books, news, images) tailored to user preferences. Amongst the approaches existing to recommend adequate content, we use the collaborative filtering approach of finding the information that satisfies the user by using the reviews of other users. These reviews are stored in matrices that their sizes increase exponentially to predict whether an item is relevant or not. The evaluation shows that these systems provide unsatisfactory recommendations because of what we call the cold start factor. Our objective is to apply a hybrid approach to improve the quality of our recommendation system. The benefit of this approach is the fact that it does not require a new algorithm for calculating the predictions. We are going to apply two algorithms: k-nearest neighbours (KNN) and the matrix factorization algorithm of collaborative filtering which are based on the method of (singular-value-decomposition). Our combined model has a very high precision and the experiments show that our method can achieve better results.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.