The problem of a dislocation parallel and close to two free surfaces of a thin foil made up of two plates of different nature, using anisotropic elasticity, is treated numerically. Different applications are presented for the thin homogeneous crystals Al/Al and Cu/Cu and also for the thin bicrystal Al/Cu.
Purpose
When concrete is manufactured, it can be instantaneously contaminated by chloride (Cl−) ions or later by their intrusion from the environment. This work aims to study the electrochemical behavior of the passive layer formed on the reinforcing steel surface in the presence of the same Cl− ion concentration, with and without passivation time. This will, undoubtedly, affect the corrosion threshold values thereafter.
Design/methodology/approach
Electrochemical polarizations were carried out in two concrete pore solutions. The surfaces of samples immersed for 255 days in saturated Ca(OH)2 solution were examined with optical and scanning electron microscopy and Raman microspectroscopy.
Findings
Cl− ion origins in reinforced concrete lead to different values of corrosion thresholds. The passive layer behaves like a physicochemical barrier, and corrosion occurs at higher NaCl concentration thresholds. The formed passive film on the steel surface shows differences in the chemical composition and the morphology. The results show a rich presence of hematite. Maghemite, lepidocrocite, akaganeite and goethite are also present in much lower concentrations. The Cl− ion presence in fresh concrete at the beginning of the manufacture harms the good formation and the good stability of these oxides, leading to corrosion initiation.
Originality/value
This study contributes to a better understanding of the passive layer role, not only in reducing the corrosion rate value but also in reconsidering new Cl− ion corrosion threshold values.
A solid-state sensor has been constructed and used for the detection of hydrogen generated during corrosion of steel in pH2 solutions. In addition to that, weight loss, AC impedance measurements and selected slow strain rate tests were performed under the same conditions as the hydrogen measurements in order to ascertain the degree of embrittlement of steel.The use of such a device in cathodic protection by impressed current in artificial seawater was also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.