Engineering computer codes are often computationally expensive. To lighten this load, we exploit new covariance kernels to replace computationally expensive codes with surrogate models. For input spaces with large dimensions, using the kriging model in the standard way is computationally expensive because a large covariance matrix must be inverted several times to estimate the parameters of the model. We address this issue herein by constructing a covariance kernel that depends on only a few parameters. The new kernel is constructed based on information obtained from the Partial Least Squares method. Promising results are obtained for numerical examples with up to 100 dimensions, and significant computational gain is obtained while maintaining sufficient accuracy.
In many engineering optimization problems, the number of function evaluations is often very limited because of the computational cost to run one high-fidelity numerical simulation. Using a classic optimization algorithm, such as a derivative-based algorithm or an evolutionary algorithm, directly on a computational model is not suitable in this case. A common approach to addressing this challenge is to use black-box surrogate modeling techniques. The most popular surrogate-based optimization algorithm is the Efficient Global Optimization (EGO) algorithm, which is an iterative sampling algorithm that adds one (or many) point(s) per iteration. This algorithm is often based on an infill sampling criterion, called expected improvement, which represents a trade-off between promising and uncertain areas. Many studies have shown the efficiency of EGO, particularly when the number of input variables is relatively low. However, its performance
During the last years, kriging has become one of the most popular methods in computer simulation and machine learning. Kriging models have been successfully used in many engineering applications, to approximate expensive simulation models. When many input variables are used, kriging is inefficient mainly due to an exorbitant computational time required during its construction. To handle high-dimensional problems (100+), one method is recently proposed that combines kriging with the Partial Least Squares technique, the so-called KPLS model. This method has shown interesting results in terms of saving CPU time required to build model while maintaining sufficient accuracy, on both academic and industrial problems. However, KPLS has provided a poor accuracy compared to conventional kriging on multimodal functions. To handle this issue, this paper proposes adding a new step during the construction of KPLS to improve its accuracy for multimodal functions. When the exponential covariance functions are used, this step is based on simple identification between the covariance function of KPLS and kriging. The developed method is validated especially by using a multimodal academic function, known as Griewank function in the literature, and we show the gain in terms of accuracy and computer time by comparing with KPLS and kriging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.