The nature and importance of nonadditive three-body interactions in the ionic OH−(H2O)2 cluster have been studied by supermolecule Mo/ller–Plesset (MP) perturbation theory and coupled-cluster method, and by symmetry-adapted perturbation theory (SAPT). The convergence of the SAPT expansion was tested by comparison with the results obtained from the supermolecule Mo/ller–Plesset perturbation theory calculations through the fourth order (MP2, MP3, MP4SDQ, MP4), and the coupled-cluster calculations including single, double, and approximate triple excitations [CCSD(T)]. It is shown that the SAPT results reproduce the converged CCSD(T) results within 10%. The SAPT method has been used to analyze the three-body interactions in the clusters OH−(H2O)n, n=2,3,4,10, with water molecules located either in the first or the second solvation shell. It is shown that at the Hartree–Fock level the induction nonadditivity is dominant, but it is partly quenched by the Heitler–London and exchange-induction/deformation terms. This implies that the induction energy alone is not a reliable approximation to the Hartree–Fock nonadditive energy. At the correlated level, the most important contributions come from the induction-dispersion and the MP2 exchange energies. The exchange-dispersion and dispersion nonadditivities are much smaller, and for some geometries even negligible. This suggests that it will be difficult to approximate the three-body potential for OH−(H2O)2 by a simple analytical expression. The three-body energy represents only 4%–7% of the pair CCSD(T) intermolecular energy for the OH−(H2O)2 cluster, but can reach as much as 18% for OH−(H2O)4. Particular attention has been paid to the effect of the relaxation of the geometry of the subsystems.
A QSAR model to predict the antioxidant activity of flavonoid compounds was developed. New electronic structure descriptors which are Fukui indices are correlated to the radical scavenging of flavonoids. These indices are obtained at DFT/B3LYP level of chemical quantum theory. The logIC50 experimental values of antioxidant activity are taken from the literature. The model is based on the multilinear regression method. Both experimental and calculated data of 36 flavonoids compounds were analyzed. A good correlation coefficient (R(2) = 0.8159) is obtained and the antioxidant activities of test compounds are well predicted.
alpha-Aminophosphonic acids are analogues of natural alpha-aminoacids and very promising agents for use in various pharmaceutical applications. However, in contrast to the numerous theoretical investigations on the structure of natural alpha-aminoacids, only very few studies on alpha-aminophosphonic acids have been performed. In the present work, we report a detailed investigation of the simplest compound, the glycine analogue aminomethylphosphonic acid (AMPA), by means of quantum mechanical calculations at the B3LYP/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) and MP2/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) levels. We focus on the structure of the neutral species looking at the evolution of non-ionized and ionized forms from gas phase to non-polar solvents and aqueous media. Continuum and discrete-continuum solvent models have been employed to account for the effects of the environment. The discussion is centered on: (1) the geometry and relative stability of possible conformers in gas phase and aqueous solution, (2) the free energy of tautomerization in different media, (3) the role of hydrogen bonds in liquid water, and (4) the free energy of transfer from water to a hydrophobic solvent such as cyclohexane. Systematic comparison between AMPA and Gly is performed. Though both systems exhibit many similarities, some important differences have also been found that may be explained, at least in part, by the higher acidity of phosphonic acids compared to carboxylic acids. In particular, in solvents lacking hydrogen-bond formation capability, Gly derivatives should mainly exist as non-ionized molecules while the equivalent AMPA derivatives should adopt a zwitterionic structure in media with dielectric constant above 10. This might have significant environmental or biological consequences that will need to be addressed.
Conductive polymers had been the topic of the large number of investigations during last decades because of their unique properties such as mechanochemical strength, electrical conductivity, corrosion and thermal stability. Maghnite-H+ is a montmorillonite sheet silicate clay, which exchanged with protons. Polyaniline (PANI), with unique electrical and optical properties, is a promising candidate for wide range of potential applications. So that, in the present paper we report:1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.