Introducing the concept of the normalized duality mapping on normed linear space and normed algebra, we extend the usual definitions of the numerical range from one operator to two operators. In this note we study the convexity of these types of numerical ranges in normed algebras and linear spaces. We establish some Birkhoff-James orthogonality results in terms of the algebra numerical range V (T )A which generalize those given by J.P. William and J.P. Stamplfli. Finally, we give a positive answer of the Mathieu's question.
T ∈ B ( H ) is said to be ( n , k ) -quasi-∗-paranormal operator if, for non-negative integers k and n, ∥ T ∗ ( T k x ) ∥ ( 1 + n ) ≤ ∥ T ( 1 + n ) ( T k x ) ∥ ∥ T k x ∥ n ; for all x ∈ H . In this paper, the asymmetric Putnam-Fuglede theorem for the pair ( A , B ) of power-bounded operators is proved when (i) A and B ∗ are n-∗-paranormal operators (ii) A is a ( n , k ) -quasi-∗-paranormal operator with reduced kernel and B ∗ is n-∗-paranormal operator. The class of ( n , k ) -quasi-∗-paranormal operators properly contains the classes of n-∗-paranormal operators, ( 1 , k ) -quasi-∗-paranormal operators and k-quasi-∗-class A operators. As a consequence, it is showed that if T is a completely non-normal ( n , k ) -quasi-∗-paranormal operator for k = 0 , 1 such that the defect operator D T is Hilbert-Schmidt class, then T ∈ C 10 .
We give necessary and sufficient conditions under which the norm of basic elementary operators attains its optimal value in terms of the numerical range.
We generalize the notion of Fuglede-Putnam's property to general ??Banach algebra in the sense of Fuglede operator and study the elementary operator of length ? 2 in the context of this property.
We study the range-kernel weak orthogonality of certain elementary operators induced by non-normal operators, with respect to usual operator norm and the Von Newmann-Schatten
p
p
-norm
(
1
≤
p
<
∞
)
\left(1\le p\lt \infty )
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.