Abstract-In this paper, the problem of segmentation of 3D Computed Tomography (CT) brain datasets is addressed using the fuzzy logic rules. In particular, a new method which combines Fuzzy C-Means clustering and the idea of super-voxels is introduced. Firstly, the method applies the extended Simple Linear Iterative Clustering (SLIC) method to divide image into supervoxels, which are next clustered by Modified Fuzzy C-Means algorithm. The method deals with 3D images and performs fully three dimensional image segmentation. Ten samples are supplied proving that our Modified Fuzzy C-Means (MFCM) together with super-voxels are apt to take into account a large diversity of special domains that appear and which are inappropriate solved adopting classical Fuzzy C-Means approach. The results of applying the introduced method to segmentation of the CerebroSpinal Fluid (CSF) from the brain ventricles are presented and discussed.
In this paper, the problem of segmentation of 3D Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) brain images is considered. A supervoxel-based segmentation is regarded. In particular, a new approach called Relative Linear Interactive Clustering (RLIC) is introduced. The method, dedicated to image division into super-voxels, is an extension of the Simple Linear Interactive Clustering (SLIC) super-pixels algorithm. During RLIC execution firstly, the cluster centres and the regular grid size are initialized. These are next clustered by Fuzzy C-Means algorithm. Then, the extraction of the super-voxels statistical features is performed. The method contributes with 3D images and serves fully volumetric image segmentation. Five cases are tested demonstrating that our Relative Linear Interactive Clustering (RLIC) is apt to handle huge size of images with a significant accuracy and a low computational cost. The results of applying the suggested method to segmentation of the brain tumour are exposed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.