BackgroundCutaneous Leishmaniasis (CL) is one of the most neglected tropical diseases in Morocco. Leishmania major and L. tropica are the main culprits identified in all endemic foci across the country. These two etiological agents are transmitted by Phlebotomus papatasi and P. sergenti, the two most prevalent sand fly species in Morocco. Previous studies reflected gaps of knowledge regarding the environmental fingerprints that affect the distribution of these two potential vectors across Morocco.MethodsThe sand flies were collected from 48 districts across Morocco using sticky paper traps. Collected specimens were preserved in 70 % ethanol for further processing and identification. Male and female densities were calculated in each site to examine their relations to the environmental conditions across these sites. The study used 19 environmental variables including precipitation, aridity, elevation, soil variables and a composite representing maximum, minimum and mean of day- and night-time Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI).ResultsA total of 11,717 specimens were collected during this entomological survey. These specimens represented 11 species of two genera; Phlebotomus and Sergentomyia. Correlations of the sand fly densities with the environmental variables were estimated to identify the variables which influence the distribution of the two potential vectors, Phlebotomus papatasi and P. sergenti, associated with all CL endemic foci across the country. The density of P. papatasi was most affected by temperature changes. The study showed a significant positive correlation between the densities of both sexes of P. papatasi and night-time temperatures. Both P. papatasi and P. sergenti showed a negative correlation with aridity, but, such correlation was only significant in case of P. papatasi.NDVI showed a positive correlation only with densities of P. sergenti, while, soil PH and soil water stress were negatively correlated with the densities of both males and females of only P. papatasi.ConclusionsOur results identified the sand fly species across all CL endemic sites and underlined the influences of night-time temperature, soil water stress and NDVI as the most important variables affecting the sand fly distribution in all sampled sites. This preliminary study considered the importance of these covariates to anticipate the potential distribution of P. papatasi and P. sergenti in Morocco.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1343-6) contains supplementary material, which is available to authorized users.
The study investigates the land use and land cover (LULC) in Errachidia province (Pre-Saharan of Morocco) in the period 2005–2020. To this end, remote sensing (RS) tools such as LULC, the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), the Enhanced Vegetation Index (EVI), Gravity Recovery and Climate Experiment (GRACE) satellite data, and precipitations were processed and combined. The monitoring of LULC over this period reveals different changes in this area. Generally, for water bodies, two trends can be observed, an increasing trend since 2006 and a decreasing trend from 2011 to the present. However, an increasing trend was recorded for the urban-and-built-up-lands and the grasslands categories. NDVI, NDWI, and EVI showed three major peaks recorded in the same periods (in 2007, 2009, and 2015). In terms of water storage, three phases were found. The first depicted the lowest groundwater quantities with a decreasing trend, which corresponds to a period of drought and/or human pressure. The second phase, the most important that recorded the greatest storage of water while the third phase corresponds to low storage with a decreasing trend. LULC of croplands reveals a slightly increasing trend from 2012 to 2020, which shows an orientation to an extension of crops mainly of date palm encouraged by government programs. A strong correlation between the seasonal NDVI and water storage using GRACE-Data for the period was found. In the end, recommendations on the adaptation to CC were proposed. The findings demonstrate that RS techniques are useful tools to detect hydrological droughts, observe, and conserve land resources. In arid areas such as Errachidia, the solution lies in rationalizing the use of water resources protecting them from uncontrolled anthropogenic events, which may alleviate the pressure. To support local sustainable development, environmental scientists and decision-makers may use the outputs of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.