The average life expectancy of many people undergoing total hip replacement (THR) exceeds twenty-five years and the demand for implants that increase the load-bearing capability of the bone without affecting the short- or long-term stability of the prosthesis is high. Mechanical failure owing to cement damage and stress shielding of the bone are the main factors affecting the long-term survival of cemented hip prostheses and implant design must realistically adjust to balance between these two conflicting effects. In the following analysis we introduce a novel methodology to achieve this objective, the numerical technique combines automatic and realistic modeling of the implant and embedding medium, and finite element analysis to assess the levels of stress shielding and cement damage and, finally, global optimization, using orthogonal arrays and probabilistic restarts, were used. Applications to implants, fabricated using a homogeneous material and a functionally graded material, were presented.
The longevity of hip prostheses is contingent on the stability of the implant within the cavity of the femur bone. The cemented fixation was mostly adopted owing to offering the immediate stability from cement-stem and cement-bone bonding interfaces after implant surgery. Yet cement damage and stress shielding of the bone were proven to adversely affect the lifelong stability of the implant, especially among younger subjects who tend to have an active lifestyle. The geometry and material distribution of the implant can be optimized more efficiently with a three-dimensional realistic design of a functionally graded material (FGM). We report an efficient numerical technique for achieving this objective, for maximum performance stress shielding and the rate of early accumulation of cement damage were concurrently minimized. Results indicated less stress shielding and similar cement damage rates with a 2D-FGM implant compared to 1D-FGM and Titanium alloy implants.
The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.
The quest for high thermal conductivity materials has led to nanocomposites incorporating macromolecular materials with excellent thermal conductivity, such as carbon nanotubes and graphene nanoribbons, in a matrix of poorer thermal conductivity. To minimize the interface thermal resistance the stiff, incorporated materials can be chemically functionalized with various side chains. We report here an efficient theoretical method using normal modes to calculate the thermal conductivity of such systems and show how the participation ratio of these modes can be used to evaluate different choices for functionalization. We use this method to examine how effective different alkane chains improve the heat flux through a graphene nanosheet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.