The Stirling engine is one of the most promising devices for the recovery of waste heat. Its power output can be optimized by several means, in particular by an optimized piston motion. Here, we investigate its potential performance improvements in the presence of dissipative processes. In order to ensure the possibility of a technical implementation and the simplicity of the optimization, we restrict the possible piston movements to a parametrized class of smooth piston motions. In this theoretical study the engine model is based on endoreversible thermodynamics, which allows us to incorporate non-equilibrium heat and mass transfer as well as the friction of the piston motion. The regenerator of the Stirling engine is modeled as ideal. An investigation of the impact of the individual loss mechanisms on the resulting optimized motion is carried out for a wide range of parameter values. We find that an optimization within our restricted piston motion class leads to a power gain of about 50% on average.
The recuperation of otherwise lost waste heat provides a formidable way to decrease the primary energy consumption of many technical systems. A possible route to achieve that goal is through the use of Stirling engines, which have shown to be reliable and efficient devices. One can increase their performance by optimizing the piston motion. Here, it is investigated to which extent the cycle averaged power output can be increased by using a special class of adjustable sinusoidal motions (the AS class). In particular the influence of the regeneration effectiveness on the piston motion is examined. It turns out that with the optimized piston motion one can achieve performance gains for the power output of up to 50% depending on the loss mechanisms involved. A remarkable result is that the power output does not depend strongly on the limitations of the regenerator, in fact—depending on the loss terms—the influence of the regenerator practically vanishes.
We introduce a reduced-order endoreversible model of a Vuilleumier refrigerator for waste heat recovery. Based on the Vuilleumier cycle, in this refrigerator a working gas is alternately displaced between three subsystems that are in thermal contact with external heat reservoirs. Regarding refrigeration performance, very crucial components of the Vuilleumier machine are its two regenerators. For obtaining a sufficiently accurate model of the Vuilleumier machine, it is hence essential to incorporate a proper description of the regenerators. This can be achieved by using onedimensional continuum models, e.g. with a finite volume approach, which brings about a large number of degrees of freedom and significant numerical effort. As opposed to that, the model presented in this paper utilizes a novel modeling ansatz for the regenerators that reduces the number of degrees of freedom per regenerator to three. It leads to a considerable reduction in numerical effort and computation time and is hence predestined for applications like design and control optimizations. For an exemplary set of design parameters and operational conditions, we validate the model against a detailed finite volume model of the regenerators in order to work out limitations and perspectives.
The power output of Stirling engines can be optimized by several means. In this study, the focus is on potential performance improvements that can be achieved by optimizing the piston motion of an alpha-Stirling engine in the presence of dissipative processes, in particular mechanical friction. We use a low-effort endoreversible Stirling engine model, which allows for the incorporation of finite heat and mass transfer as well as the friction caused by the piston motion. Instead of performing a parameterization of the piston motion and optimizing these parameters, we here use an indirect iterative gradient method that is based on Pontryagin’s maximum principle. For the varying friction coefficient, the optimization results are compared to both, a harmonic piston motion and optimization results found in a previous study, where a parameterized piston motion had been used. Thus we show how much performance can be improved by using the more sophisticated and numerically more expensive iterative gradient method.
Vuilleumier refrigerators are devices which provide cooling power by using heat from a source at a temperature above the ambient. This feature makes Vuilleumier refrigerators particularly useful in situations where waste heat is abundant but electrical energy is scarce even as auxiliary operating power. For an operation by heat only with no need of auxiliary power, the Vuilleumier refrigerators must be designed in such a way that the mechanical losses occurring during operation are compensated by power gained from pressure differences. Here, we study the optimal design of such a device with heat-only operation maximizing the cooling power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.