The theory of dynamical systems is one of the most important theorems of scientific research because it relies heavily on most of the major fields of applied mathematics to give a sufficiently broad view of reality, but it still poses some problems, especially with regard to the modeling of certain physical phenomena. Since most of these systems are designed as continuous or discrete dynamic systems with large dimensions and multiple bifurcation parameters, researchers face major problems in qualitative study. In this paper, we propose a method to study bifurcations of continuous three-dimensional dynamic systems in general and chaotic systems in particular, which contains many bifurcation parameters. This method is mainly based on the projection on the plane and on the appropriate bifurcation parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.