Genetic Algorithm (GA) has emerged as a powerful method for solving a wide range of combinatorial optimisation problems in many fields. This paper presents a hybrid heuristic approach named Guided Genetic Algorithm (GGA) for solving the Multidimensional Knapsack Problem (MKP). GGA is a two-step memetic algorithm composed of a data pre-analysis and a modified GA. The pre-analysis of the problem data is performed using an efficiency-based method to extract useful information. This prior knowledge is integrated as a guide in a GA at two stages: to generate the initial population and to evaluate the produced offspring by the fitness function. Extensive experimentation was carried out to examine GGA on the MKP. The main GGA parameters were tuned and a comparative study with other methods was conducted on well-known MKP data. The real impact of GGA was checked by a statistical analysis using ANOVA, t-Test and Welch's t-Test. The obtained results showed that the proposed approach largely improved standard GA and was highly competitive with other optimisation methods.
Bio-inspired optimization algorithms have recently attracted much attention in the control community. Most of these algorithms mimic particular behaviors of some animal species in such a way that allows solving optimization problems. The present paper aims at applying three metaheuristic methods for optimizing Fuzzy Logic Controllers used for quadrotor attitude stabilization. The investigated methods are Particle Swarm Optimization (PSO), BAT algorithm and Cuckoo Search (CS). These methods are applied to find the best output distribution of singleton membership functions of the Fuzzy Controllers. The quadrotor control requires measured responses, therefore, three objective functions are considered: Integral Squared Error, Integral Time-weighted Absolute Error and Integral Time-Squared Error. These metrics allow performance comparison of to compare the controllers in terms of tracking errors and speed of convergence. The simulation results indicate that BAT algorithm demonstrated higher performance than both PSO and CS. Furthermore, BAT algorithm is capable of offering 50% less computation time than CS and 10% less time than PSO. In terms of fitness, BAT algorithm achieved an average of 5% better fitness than PSO and 15% better than Cuckoo Search. According to these results, the BAT-based Fuzzy Controller exhibits superior performance compared with other algorithms to stabilize the quadrotor.
This paper presents an improved version of Genetic Algorithm (GA) to solve the 0-1 Multidimensional Knapsack Problem (MKP01), which is a well-known NP-hard combinatorial optimisation problem. In combinatorial optimisation problems, the best solutions have usually a common partial structure. For MKP01, this structure contains the items with a high values and low weights. The proposed algorithm called Genetic Algorithm Guided by Pretreatment information (GAGP) calculates these items and uses this information to guide the search process. Therefore, GAGP is divided into two steps, in the first, a greedy algorithm based on the efficiency of each item determines the subset of items that are likely to appear in the best solutions. In the second, this knowledge is utilised to guide the GA process. Strategies to generate the initial population and calculate the fitness function of the GA are proposed based on the pretreatment information. Also, an operator to update the efficiency of each item is suggested. The pretreatment information has been investigated using the CPLEX deterministic optimiser. In addition, GAGP has been examined on the most used MKP01 data-sets, and compared to several other approaches. The obtained results showed that the pretreatment succeeded to extract the most part of the important information. It has been shown, that GAGP is a simple but very competitive solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.