The influence of mechanical stress on the magnetic hysteretic behavior is modeled through the association of a reversible simplified multiscale approach, and a macroscopic energy-based magnetic hysteresis model in a vector-play form. A phenomenological description of the dissipation parameters under mechanical stress is proposed. The non-monotonic effect of tensile stress on the magnetic permeability is modeled using a second-order development in the magneto-elastic energy. Material parameters for both reversible and irreversible behavior are identified from experimental characterization under mechanical stress performed on a DC04 electrical steel. The experimental tests include anhysteretic and hysteretic measurements. Modeling results of the anhysteretic magnetic permeability, the coercive field, and the remanent induction under several levels of peak magnetic field and uniaxial mechanical stress are satisfactorily compared with those obtained experimentally. The model is shown to reasonably predict the hysteresis losses under tensile and compressive stress, as well as the response of the material under a complex magnetic field waveform with harmonic content.INDEX TERMS Hysteresis model, magneto-elastic behavior, multiscale modeling, electrical steel.
A theoretical model is derived to extend existing work on the theory of acoustoelasticity in isotropic materials subjected to uniaxial or hydrostatic loadings, up to the case of arbitrary triaxial loading. The model is applied to study guided wave propagation in a plate. The semi-analytical finite element method is adapted to deal with the present theory. Effects of triaxial loading on velocities of Lamb and shear horizontal (SH) modes are studied. They are non-linearly dependent on stress, and this nonlinearity is both frequency-dependent and anisotropic. Velocity changes induced by the effect of stress on the plate thickness are shown to be non-negligible. When a stress is applied, both Lamb and SH modes lose their simple polarization characteristics when they propagate in directions different from the principal directions of stress. The assumption that effects induced by a multiaxial stress equal the sum of effects induced by each of its components independently is tested. Its validity is shown to depend on frequency and propagation direction. Finally, the model is validated by comparing its predictions to theoretical and experimental results of the literature. Its predictions agree very well with measurements and are significantly more accurate than those of existing theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.