Frankia sp. strain BMG5.30 was isolated from root nodules of a Coriaria myrtifolia seedling on soil collected in Tunisia and represents the second cluster 2 isolate. Frankia sp. strain BMG5.30 was able to re-infect C. myrtifolia generating root nodules. Here, we report its 5.8-Mbp draft genome sequence with a G + C content of 70.03% and 4509 candidate protein-encoding genes.
The taxonomic status of strain M16386, a nitrogen-fixing but non-nodulating isolate from Morella californica, was established on the basis of a polyphasic approach. The strain grows as branched hyphae, with vesicles and non-motile productive multilocular sporangia. It metabolizes short fatty acids, TCA cycle intermediates and carbohydrates as carbon sources, and fixes nitrogen in the absence of combined nitrogen source in the growth media. Chemotaxonomic traits of strain M16386 are consistent with its affiliation to the genus Frankia. The characteristic diamino acid in the cell wall is meso-diaminopimelic acid. Strain M16386 contains phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, glycophospholipid and phospholipid as polar lipids; MK-9(H4) and MK-9(H6) as the predominant menaquinones; iso-C16 : 0 and C17 : 1ω8c as major fatty acids; and galactose, glucose, mannose, rhamnose and ribose as whole-cell sugars. Strain M16386 showed 98.2 % 16S rRNA gene sequence similarity with its closest phylogenetic neighbour, Frankia inefficaxDSM 45817. Based on these results, strain M16386 (=DSM 100626=CECT 9040) is designated the type strain of a novel species of the genus Frankia,for which the name Frankia asymbiotica sp. nov. is proposed.
Actinorhizal plants host mutualistic symbionts of the nitrogen-fixing actinobacterial genus Frankia within nodule structures formed on their roots. Several plant-growth-promoting bacteria have also been isolated from actinorhizal root nodules, but little is known about them. We were interested investigating the in planta microbial community composition of actinorhizal root nodules using culture-independent techniques. To address this knowledge gap, 16S rRNA gene amplicon and shotgun metagenomic sequencing was performed on DNA from the nodules of Casuarina glauca. DNA was extracted from C. glauca nodules collected in three different sampling sites in Tunisia, along a gradient of aridity ranging from humid to arid. Sequencing libraries were prepared using Illumina NextEra technology and the Illumina HiSeq 2500 platform. Genome bins extracted from the metagenome were taxonomically and functionally profiled. Community structure based off preliminary 16S rRNA gene amplicon data was analyzed via the QIIME pipeline. Reconstructed genomes were comprised of members of Frankia, Micromonospora, Bacillus, Paenibacillus, Phyllobacterium, and Afipia. Frankia dominated the nodule community at the humid sampling site, while the absolute and relative prevalence of Frankia decreased at the semi-arid and arid sampling locations. Actinorhizal plants harbor similar non-Frankia plant-growth-promoting-bacteria as legumes and other plants. The data suggests that the prevalence of Frankia in the nodule community is influenced by environmental factors, with being less abundant under more arid environments.
Molecular signaling networks in the actinorhizal rhizosphere select host-compatible Frankia strains, trigger the infection process and eventually the genesis of nitrogen-fixing nodules. The molecular triggers involved remain difficult to ascertain. Root exudates (RE) are highly dynamic substrates that play key roles in establishing the rhizosphere microbiome. RE are known to induce the secretion by rhizobia of Nod factors, polysaccharides, and other proteins in the case of legume symbiosis. Next-generation proteomic approach was here used to decipher the key bacterial signals matching the first-step recognition of host plant stimuli upon treatment of Frankia coriariae strain BMG5.1 with RE derived from compatible (Coriaria myrtifolia), incompatible (Alnus glutinosa), and non-actinorhizal (Cucumis melo) host plants. The Frankia proteome dynamics were mainly driven by host compatibility. Both metabolism and signal transduction were the dominant activities for BMG5.1 under the different RE conditions tested. A second set of proteins that were solely induced by C. myrtifolia RE and were mainly linked to cell wall remodeling, signal transduction and host signal processing activities. These proteins may footprint early steps in receptive recognition of host stimuli before subsequent events of symbiotic recruitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.