Although there are various Medium Access Control (MAC) protocols proposed for Wireless Sensor Network (WSN), there is no protocol accepted as a standard specific to it. This paper deals with completing the design of our previously proposed MAC for WSN by proposing a channel access mechanism (CAM). The CAM is based on developing a backoff mechanism which mainly differentiates nodes’ backoffs depending on their different identification numbers, and it employs a performance tuning parameter for reaching a required performance objective. The probability distribution of the backoff period is constructed and Markov chain modeling is used to analyze and evaluate the CAM against the IEEE802.15.4 slotted CSMA/CA based on single- and multihop communication with respect to the reliability, the average delay, the power consumption, and the throughput. The analysis reveals that the required performance of CAM against the IEEE slotted CSMA/CA can be obtained by choosing the maximum backoff stages number and the tuning parameter value and that CAM performs better than the IEEE with larger nodes number. The multihop scenario results in a good end-to-end performance of CAM with respect to the reliability and delay becomes better with lengthier paths at the expense of increasing the energy consumption.
This paper aims at designing a Timing Structure Mechanism (TSM) for Wireless Sensor Network (WSN) MAC, with specifying its respective logical topology, especially suitable to the monitoring applications, differentiated and characterized from the existing time bounding strategies, paving for a good performance channel access mechanism. The work proposed in this paper is based on classifying the monitoring applications so as to designing efficient setup and benefiting from the node's capabilities in dividing the network into sub-networks. By evaluating TSM against a cluster-tree IEEE802.15.4 in the two cases of one channel and multi-channel clusters, the simulation results showed that with varying the area, the TSM performs better than the two cases of IEEE802.15.4 in terms of lifetime, end-to-end delay, loss percentage by on average 103.44% and 61.84%, 96.59% and 95.37%, and 88.59% and 87.52%, respectively. Also, in case of increasing the node density, TSM is better in terms of the same parameters by on average 446.58% and 356.05%, 98.04% and 95.62%, and 77.62% and 75.2%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.