Every day, professionals generate and use massive healthcare data to save, treat and ameliorate the lives of patients. The healthcare industry has adopted cloud-based solutions to solve several problems in a cost-effective manner. Therefore, privacy and security mechanisms should be deployed to protect valuable medical information from unauthorized access. Much of the work in literature in recent years has focused on using artificial intelligence techniques such as deep learning and federated learning to solve various problems in the health field.Federated learning (FL) is a special technique for machine learning for privacy preservation. This study aims to compare the traditional centralized training approach and FL to show the advantages of using FL in the medical field and prove that FL can be adopted for security and data latency in e-health systems. The results obtained showed the feasibility of FL when compared to traditional methods used in the aspect of securing data and latency in the medical field .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.