In this paper, the behavior of the interface pile-soil is simulated using a unilateral contact model with the coupling of friction and adhesion. This model gives a continuous transition from complete adhesion to the classical Coulomb friction law with unilateral conditions. The model is implemented in the finite element code GYPTIS90 developed by Raous et al. An application is presented, for modeling soil/pile interface behavior, on the simulation of pull-out experiments of a pile. The identification of the model parameters is discussed and comparisons are presented between modeled pile behavior and that predicted from experimental results. The proposed model have achieved better results.
The paper is related to the analysis and the modeling of structural interface behaviors when unilateral contact, friction and adhesion interact. Among the contact models in literature, the model developed by Raous, Cangémi, Cocou and Monerie (RCCM model) is retained. It consists to include strict unilateral contact to avoid interpenetration, initial adhesion progressively decreases when the load increases, and Coulomb's friction which is progressively activated when adhesion decreases. Because of its implicit character, the Coulomb friction law with adhesion is non-associated, and the notion of superpotential with normality rule cannot be used anymore. In the present work, to overcome this non-associated character, a specific potential adapted to coupling unilateral contact, friction and adhesion is build and named bipotential. A numerical model is proposed and improved to solve the boundaries values problem. The algorithm is implemented in the finite element code SYMEF which has been developed at the University of Bechar (Algeria). A comparative study is made between the bipotential model and the previously developed RCCM model. The numerical results show that, this approach is robust and efficient in terms of numerical stability, precision convergence and CPU time compared to the RCCM model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.