<p>Wireless sensor networks (WSN) are made up of an important number of sensors, called nodes, distributed in random way in a concerned monitoring area. All sensor nodes in the network are mounted with limited energy sources, which makes energy harvesting on top of the list of issues in WSN. A poor communication architecture can result in excessive consumption, reducing the network lifetime and throughput. Centralizing data collection and the introduction of gateways (GTs), to help cluster heads (CHs), improved WSN life time significantly. However, in vast regions, misplacement and poor distribution of GTs wastes a huge amount of energy and decreases network’s performances. In this work, we describe a reliable and dynamic with energy-awareness routing (RDEAR) protocol that provides a new GT’s election approach taking into consideration CHs density, transmission distance and energy. Applied on 20 different networks, RDEAR reduced the overall energy consumption, increased stability zone and network life time as well as other compared metrics. Our proposed approach increased network’s throughput up to 75.92% , 67.7% and 9.78% compared to the low energy adaptive clustering hierarchy (LEACH), distributed energy efficient clustering (DEEC) and static multihop routing (SMR), protocols, respectively.</p>
<p>Nowadays, many pedestrians are injured or killed in traffic accidents. As a result, several artificial vision solutions based on pedestrian detection have been developed to assist drivers and reduce the number of accidents. Most pedestrian detection techniques work well on sunny days and provide accurate traffic data. However, detection decreases dramatically in rainy conditions. In this paper, a new pedestrian detection system (PDS) based on generative adversarial network (GAN) module and the real-time object detector you only look once (YOLO) v3 is proposed to mitigate adversarial weather attacks. Experimental evaluations performed on the VOC2014 dataset show that our proposed system performs better than models based on existing noise reduction methods in terms of accuracy for weather situations.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.