GPS trajectories collected from automotive telematics for insurance purposes go beyond being a collection of points on the map. They are in fact a powerful data source that we can use to extract map and road network properties. While the location of road junctions is readily available, the information about the traffic control element regulating the intersection is typically unknown. However, this information would be helpful, e.g., for contextualizing a driver’s behavior. Our focus is to use a map-matched GPS OBD-dongle dataset provided by a Canadian insurance company to classify intersections into three classes according to the type of traffic control element present: traffic light, stop sign, or no sign. We design a convolutional neural network (CNN) for classifying intersections. The network takes as entries, for a defined number of trips, the speed and the acceleration profiles over each segment of one meter on a window around the intersection. Our method outperforms two other competing approaches, achieving 99% overall accuracy. Furthermore, our CNN model can infer the three classes even with as few as 25 trips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.