This research focuses on developing a proportional integral derivative controller based on a single artificial neural network (PID-SANN). The proposed control strategy drives the direct current (DC-DC) boost converter output voltage to follow the desired reference value. This controller calculates the PID gains via a learning algorithm based on an artificial single-neuron network, which overcomes the computational complexity of PID gains using analytical methods and automatically adjusts the controller parameters. The developed PID-SANN method offers the boost converter the appropriate duty ratio, which permits controlling the output voltage value despite fluctuations in the resistive load or input voltage. The obtained results confirm that the developed method can successfully surmount the constraints of conventional PID controllers and direct the output voltage of the considered DC-DC converter to follow the required value precisely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.