Despite numerous evidences for neurotoxicity of overexpressed α-synuclein, a protective function was suggested for endogenous α-synuclein and other members of the synuclein family. This protective role is most important for and evident in presynaptic terminals, where synucleins are normally accumulated. However, mice lacking synucleins display no adverse phenotype. In particular, no significant changes in striatal dopamine metabolism and only subtle deficit of dopaminergic neurons in the substantia nigra were found in juvenile or adult mice. To assess whether aging and synuclein deficiency may have additive detrimental effect on the nigrostriatal system, we studied dopaminergic neurons of the substantia nigra and their striatal synapses in 24–26-month-old α-synuclein and γ-synuclein null mutant mice. Significant ∼36% reduction of the striatal dopamine was found in aging α-synuclein, but not γ-synuclein null mutant mice when compared to age-matching wild type mice. This was accompanied by the reduction of TH-positive fibers in the striatum and decrease of striatal levels of TH and DAT. However, no progressive loss of TH-positive neurons was revealed in the substantia nigra of synuclein-deficient aging animals. Our results are consistent with a hypothesis that α-synuclein is important for normal function and integrity of synapses, and suggest that in the aging nervous system dysfunction of this protein could become a predisposition factor for the development of nigrostriatal pathology.
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and postural instability, for which there is no effective treatment available till date. Here, we report the development of nonviral vectors specific for neuronal cells that can deliver short interfering RNA (siRNA) against the α-synuclein gene (SNCA), and prevent PD-like symptoms both in vitro and in vivo. These vectors not only help siRNA duplexes cross the blood-brain barrier in mice, but also stabilize these siRNAs leading to a sustainable 60-90% knockdown of α-synuclein protein. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rapidly develop PD-like symptoms which were significantly alleviated when SNCA was knocked down using our vectors. Together, our data not only confirm the central role of α-synuclein in the onset of PD, but also provide a proof of principle that these nonviral vectors can be used as novel tools to design effective strategies to combat central nervous system diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.