In this paper, the initial and maximum load was studied using the Finite Element Modeling (FEM) analysis during impact testing (CVN) of pipeline X70 steel. The Gurson-Tvergaard-Needleman (GTN) constitutive model has been used to simulate the growth of voids during deformation of pipeline steel at different temperatures. FEM simulations results used to study the sensitivity of the initial and maximum load with GTN parameters values proposed and the variation of temperatures. Finally, the applied artificial neural network (ANN) is used to predict the initial and maximum load for a given set of damage parameters X70 steel at different temperatures, based on the results obtained, the neural network is able to provide a satisfactory approximation of the load initiation and load maximum in impact testing of X70 Steel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.