Grayscale and color textures can have spectral informative content. This spectral information coexists with the grayscale or chromatic spatial pattern that characterizes the texture. This informative and nontextural spectral content can be a source of confusion for rigorous evaluations of the intrinsic textural performance of texture methods. In this paper, we used basic image processing tools to develop a new class of textures in which texture information is the only source of discrimination. Spectral information in this new class of textures contributes only to form texture. The textures are grouped into two databases. The first is the Normalized Brodatz Texture database (NBT) which is a collection of grayscale images. The second is the Multiband Texture (MBT) database which is a collection of color texture images. Thus, this new class of textures is ideal for rigorous comparisons between texture analysis methods based only on their intrinsic performance on texture characterization.
In terms of the space cities occupy, urbanization appears as a minor land transformation. However, it permanently modifies land’s ecological functions, altering its carbon, energy, and water fluxes. It is therefore necessary to develop a land cover characterization at fine spatial and temporal scales to capture urbanization’s effects on surface fluxes. We develop a series of biophysical vegetation parameters such as the fraction of photosynthetically active radiation, leaf area index, vegetation greenness fraction, and roughness length over the continental US using MODIS and Landsat products for 2001. A 13-class land cover map was developed at a climate modeling grid (CMG) merging the 500 m MODIS land cover and the 30 m impervious surface area from the National Land Cover Database. The landscape subgrid heterogeneity was preserved using fractions of each class from the 500 m and 30 m into the CMG. Biophysical parameters were computed using the 8-day composite Normalized Difference Vegetation Index produced by the North American Carbon Program. In addition to urban impact assessments, this dataset is useful for the computation of surface fluxes in land, vegetation, and urban models and is expected to be widely used in different land cover and land use change applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.