Lolium perenne is a major forage and turf grass, which is often naturally infected with a "wild-type" strain (E(WT)) of the fungal endophyte Neotyphodium lolii , establishing a symbiotic relationship. In this study, the impacts of different strains wild type E(WT), AR1 (E(AR1)) and AR37 (E(AR37)), of N. lolii on the phenolic profile, phenolic content, and antioxidant capacity of L. perenne were examined. Samples could be ranked according to their phenol content as follows: E(AR1) > E(AR37) ≥ E(-) > E(WT). Radical-scavenging assays showed the same relative ranking of extracts. Flavonoid glycosides and hydroxycinnamic acids were the most abundant polyphenols in L. perenne extracts. Chlorogenic acid and its derivatives were the major compounds responsible for the antioxidant activity. Infection with N. lolii significantly influenced L. perenne phenolic content and antioxidant activity. In conclusion, changes in phenolic composition were merely quantitative. Endophyte infection can have zero, positive, or negative effect on phenol content depending on the endophyte strain.
Metabolic syndrome is a cluster of three or more metabolic disorders including insulin resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the twenty-first century with more than 1.6 billion overweight adults. Due to the strong connection between obesity and type 2 diabetes, obesity has received wide attention with subsequent coining of the term “diabesity.” Recent studies have identified unique contributions of the immensely diverse gut microbiota in the pathogenesis of obesity and diabetes. Several mechanisms have been proposed including altered glucose and fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut microbiota composition observed in diabetic or obese subjects has been recognized. Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut bacteria and its impact on diabetes and obesity have been the subject of investigation by several research groups. Gut microbiota are also responsible for the extensive metabolism of polyphenols thus modulating their biological activities. The aim of this review is to shed light on the composition of gut microbes, their health importance and how they can contribute to diseases as well as their modulation by polyphenols and polysaccharides to control obesity and diabetes. In addition, the role of microbiota in improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic and antiobesity activities will be discussed.
Heme oxygenase-1 (HO-1) is a cytoprotective protein whose expression is consistently associated with therapeutic benefits in a number of pathologic conditions such as atherosclerotic vascular disease and inflammation. Although the expression of HO-1 in most tissues is low, a large number of clinical and experimental pharmacologic compounds have been demonstrated to induce HO-1. This induction is suggested to be at least partially responsible for the perceived therapeutic efficacy of these compounds. The increase in HO-1 expression in response to these compounds is the result of a complex regulatory network involving many signaling pathways and transcription factors. Understanding both the pathways by which HO-1 is induced and the mechanism through which the enzyme exerts its beneficial effects may facilitate the development of novel drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.