Designing Internet of Things (IoT) applications faces many challenges including security, massive traffic, high availability, high reliability and energy constraints. Recent distributed computing paradigms, such as Fog and multi-access edge computing (MEC), software-defined networking (SDN), network virtualization and blockchain can be exploited in IoT networks, either combined or individually, to overcome the aforementioned challenges while maintaining system performance. In this paper, we present a framework for IoT that employs an edge computing layer of Fog nodes controlled and managed by an SDN network to achieve high reliability and availability for latency-sensitive IoT applications. The SDN network is equipped with distributed controllers and distributed resource constrained OpenFlow switches. Blockchain is used to ensure decentralization in a trustful manner. Additionally, a data offloading algorithm is developed to allocate various processing and computing tasks to the OpenFlow switches based on their current workload. Moreover, a traffic model is proposed to model and analyze the traffic indifferent parts of the network. The proposed algorithm is evaluated in simulation and in a testbed. Experimental results show that the proposed framework achieves higher efficiency in terms of latency and resource utilization.
In Wireless Sensor Networks (WSNs), routing data towards the sink leads to unbalanced energy consumption among intermediate nodes resulting in high data loss rate. The use of multiple Mobile Data Collectors (MDCs) has been proposed in the literature to mitigate such problems. MDCs help to achieve uniform energy-consumption across the network, fill coverage gaps, and reduce end-to-end communication delays, amongst others. However, mechanisms to support MDCs such as location advertisement and route maintenance introduce significant overhead in terms of energy consumption and packet delays. In this paper, we propose a self-organizing and adaptive Dynamic Clustering (DCMDC) solution to maintain MDCrelay networks. This solution is based on dividing the network into well-delimited clusters called Service Zones (SZs). Localizing mobility management traffic to a SZ reduces signaling overhead, route setup delay and bandwidth utilization. Network clustering also helps to achieve scalability and load balancing. Smaller network clusters make buffer overflows and energy depletion less of a problem. These performance gains are expected to support achieving higher information completeness and availability as well as maximizing the network lifetime. Moreover, maintaining continuous connectivity between the MDC and sensor nodes increases information availability and validity. Performance experiments show that DCMDC outperforms its rival in the literature. Besides the improved quality of information, the proposed approach improves the packet delivery ratio by up to 10%, end-to-end delay by up to 15%, energy consumption by up to 53%, energy balancing by up to 51%, and prolongs the network lifetime by up to 53%.
The fictional future home, workspace or city, as predicted by science TV shows of the 1960s, is now a reality. Modern microelectronics and communication technologies offer the type of smart living that looked practically inconceivable just a few decades ago. The Internet of Things (IoT) is one of the main drivers of the future smart spaces. It enables new operational technologies and offers vital financial and environmental benefits. With IoT, spaces are evolving from being just 'smart' to become intelligent and connected. This survey paper focuses on how to leverage IoT technologies to build a modular approach to smart campuses. The paper identifies the key benefits and motivation behind the development of IoT-enabled campus. Then, it provides a comprehensive view of general types of smart campus applications. Finally, we consider the vital design challenges that should be met to realise a smart campus. 1
International audienceExternal border surveillance is critical to the se- curity of every state and the challenges it poses are changing and likely to intensify. Wireless Sensor Networks (WSN) are a low cost technology that provide an intelligence-led solution to effective continuous monitoring of large, busy and complex landscapes. The linear network topology resulting from the structure of the monitored area raises challenges that have not been adequately addressed in the literature to date. In this paper, we identify an appropriate metric to measure the quality of WSN border crossing detection. Furthermore, we propose a method to calculate the required number of sensor nodes to deploy in order to achieve a specified level of coverage according to the chosen metric in a given belt region, while maintaining radio connectivity within the network. Then, we contribute a novel cross layer routing protocol, called Levels Division Graph (LDG), designed specifically to address the communication needs and link reliability for topologically linear WSN applications. The performance of the proposed protocol is extensively evaluated in simulations using realistic conditions and parameters. LDG simu- lation results show significant performance gains when compared to its best rival in the literature, Dynamic Source Routing (DSR). Compared to DSR, LDG improves the average end-to-end delays by up to 95%, packet delivery ratio by up to 20%, and throughput by up to 60%, while maintaining comparable performance in terms of normalized routing load and energy consumption
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.