This paper sheds light on an integral aspect of the global energy system: energy security. Energy security is a universal topic that shapes policies and regulations in order to achieve higher levels of energy security and thus provides societies with a better life. Understanding the concept and its implications requires a holistic definition, but current research literature lacks a commonly accepted, precisely defined definition. Therefore, the research gap is the absence of a comprehensive definition that takes into account all energy security dimensions, and the absence of well-studied relationships between energy security and its dimensions. Taking that in mind, the gap is addressed by a systematic review of energy security definitions and by building a structural dimensionalization of energy security. Thus, this review aims to track changing definitions of energy security in modern times and formulate a concise and comprehensive definition. Furthermore, using a structural approach, 15 dimensions, and related parameters of energy security are determined and categorized to illustrate the range of issues covered by the term and to enable precise evaluation of the energy security of energy systems. The results of this review show clearly how energy security could be defined generically to account all dimensions, and show the relationships between these 15 dimensions and energy security. Understanding all dimensions of energy security provides insights for policymakers to formulate policies that account for all of these dimensions.
Energy security is an international concern for all countries in the world, particularly, for the policymakers looking for the wellbeing of citizens. While proper methods to measure energy security without ignoring the different aspects and multidimensional interplay is necessary, the need for an objective evaluation with numerical indicators is of utmost importance. This research covers these gaps by providing a detailed numerical method to formulate an energy security index that is globally comprehensive, but also nationally applicable to all countries in the world. This implies to include all needed aspects and dimensions of energy security. Results of this research show the global performance of all countries in the world in energy security and the performance of these countries in each of the 15 dimensions that articulate energy security. Germany and the United States performed best in the world, when it comes to overall energy security levels, whereas the Central African Republic and Turkmenistan are on the lowest end of performance. Conclusions show that there is not a single way for development and enhancing energy security but rather different alternatives and options. Countries need to learn from each other to identify what works best for their context and implement these strategies in order to enhance energy security.
Energy security analysis is a strong tool for policy makers. It allows them to formulate policies that would enhance energy systems by targeting necessary actions. In this study, the impacts of transitioning from a fossil fuels to a renewables dominated energy system on energy security is analysed for Jordan. A Best Policy Scenario was developed for the Jordanian energy system to trace the transition to a 100% renewable energy system. Energy security was analysed for the future system by a qualitative approach utilising colour codes. The results reveal that the primary energy demand increases from 64 TWh in 2015 to 130 TWh in 2050, dominated by electricity and followed by heat and bioenergy. This indicates that a high level of direct and indirect electrification is the key to transition towards a fully sustainable energy system. Renewable electricity generation is projected to increase from 0.1 TWh in 2015 to 110.7 TWh in 2050, with a solar photovoltaic share of 92%. The levelised cost of energy develops from 78 €/MWh in 2015 to 61 €/MWh in 2050. In 2050, this system will have zero greenhouse gas emissions, it will provide plenty of job opportunities and revenue generation. This proposed transition will enhance the energy security level of the Jordanian energy system in five of the six dimensions studied. The five dimensions that will be improved are availability, cost, environment, health, and employment, whereas the dimension on diversity will stay neutral. It can be concluded that Jordan can achieve a 100% renewable energy system by 2050 and such a transition will enhance the energy security level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.